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Bayesian inference
Infer posterior distribution for state  given data 





• : "likelihood"/measurement model

• : "prior"


• : "evidence"/normalisation


In general  is high-dimensional

X Φ

p(X |Φ) =
p(Φ |X)p(X)

p(Φ)

p(Φ |X)
p(X)
p(Φ) = ∑

X

p(Φ |X)p(X)

X
5



Hidden Markov models

• : entire trajectory


• : measurements over all timesteps


Filtering: posterior for current state given history of measurements 

X = x1:t
Φ = ϕ1:t

p(xt |ϕ1:t)
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We introduce and study the planted directed polymer, in which the path of a random walker is
inferred from noisy ‘images’ accumulated at each timestep. Formulated as a nonlinear problem of
Bayesian inference for a hidden Markov model, this problem is a generalisation of the directed polymer
problem of statistical physics, coinciding with it in the limit of zero signal to noise. For a 1D walker we
present numerical investigations and analytical arguments that no phase transition is present. When
formulated on a Cayley tree, methods developed for the directed polymer are used to show that there
is a transition with decreasing signal to noise where effective inference becomes impossible, meaning
that the average fractional overlap between the inferred and true paths falls from one to zero.

I. INTRODUCTION

Recent years have seen a great deal of research activity
at the interface of statistical physics and Bayesian infer-
ence [? ]. Broadly speaking, the connection is as follows.
Suppose the system of interest is described by some ran-
dom variables x following a prior probability distribution
p(x). We learn about x by measuring some other random
variables y, which are described by some conditional dis-
tribution or ‘measurement model’ p(y|x) [? ]. From the
values of y we compute the posterior distribution p(x|y)
of x using Bayes’ rule

p(x|y) =
p(y|x)p(x)

p(y)
, (1)

where the distribution of the measurement outcomes
p(y) =

P
x p(y|x)p(x) can be regarded as a normalizing

factor or partition function in the language of statistical
physics. This setting is highly idealised, as it assumes for
example perfect knowledge of the prior distribution and
measurement model. Nevertheless, the computation of
p(x|y) will in general be intractable when the number of
variables x is large, due to the difficulty of calculating
the denominator in ??. The intractability of the parti-
tion function is a general feature of statistical mechanical
systems, and this represents the first point of contact
between statistical physics and inference. Furthermore,
there are ‘natural’ examples of inference problems over
many variables where the phenomenology of phase tran-
sitions in the thermodynamic limit of random systems is
applicable, with the values of the measurements y cor-
responding to the randomness. In the inference setting,
such transitions represent a change in the structure of
the posterior as a parameter representing the strength of
the ‘signal’ of x in the measurements y is varied. As the
signal weakens, the probability of successful inference
goes to zero at the phase transition.

⇤ swk34@cantab.ac.uk

In this work, we will be concerned with developing
the parallels between statistical mechanics and inference
within a particular class of problems that have the struc-
ture of a hidden Markov model (HMM) (??) [? ? ]. Here the

· · · xt�1 xt xt+1 · · ·

�t�1 �t �t+1

FIG. 1. Inference in a hidden Markov model

prior p(x) follows a Markov process

p(x1:t) =

 
tY

⌧=2

p(x⌧ |x⌧�1)

!
p(x1), (2)

where we have introduced the notation x1:t to denote a
sequence of variables x1, . . . xt, and p(x⌧ |x⌧�1) are the
transition probabilities (or kernel) of the process. Mea-
surements yt are conditional on the value xt at the same
timestep through some measurement model p(yt|xt).

Inference in HMMs may involve one of several related
tasks. Filtering refers to the problem of obtaining the pos-
terior p(xt|y1:t) of the present value conditioned on the
history of measurements, while smoothing involves con-
ditioning additionally over future measurements. The
most famous example of filtering in a HMM is the Kalman

filter [? ], in which both p(x⌧ |x⌧�1) and p(xt|yt) are Gaus-
sian with linear dependence on the conditioning variable.
Because the product of Gaussians is also Gaussian, the
filtering distribution p(xt|y1:t) — obtained from Bayes’
rule (??) — is a Gaussian with an explicit form.

Here we are concerned with a fundamentally nonlinear

— though very natural — observation model, consisting
of ‘images’ containing ‘pixels’, one for each possible state
of the system x. Measurements �x,t are then indexed by
both x and t and take the form

�x,t =  x,t + ✏�x,xt , (3)



The planted directed polymer

Walker undergoes a random walk 


Given walker position  pixel of image at time  distributed as 



So  

 is the Gaussian measure

p(xt |xt−1) =
1
2

δxt,xt−1
+

1
4

δxt±1,xt−1

xt t
ϕx,t ∼ 𝒩(ϵδx,xt

, σ2
S)

p(ϕt |xt) = ∏
x ( e−(ϕx,t−ϵδx,xt)

2/2σ2

2πσ2 ) = e−ϵ/2σ2eϵϕxt,t/σ
2
π(ϕt)

π(ϕt)
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Connection to the directed polymer
Assuming that the kernel only depends on its distance, 


Therefore the posterior is , where  and the 

unnormalised posterior for entire trajectory is


where 


 evolves linearly with transfer matrix 

p(xt |xt−1) ∼ e− 1
2ν (xt−xt−1)2

p(X |Φ) =
1
Z

q(X |Φ) Z = ∑
X

q(X |Φ)

q(X |Φ) = exp [∑
t

(−
1
2ν

(xt − xt−1)2 + βϕxt,t)] β =
ϵ
σ2

q(xt |ϕ1:t) = ∑
x1:t−1

q(X |Φ) Txt,xt−1
= e− 1

2ν (xt−xt−1)2+βϕxt,t
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The directed polymer
• The posterior looks formally identical to Boltzmann probability of the 

directed polymer


• Competition of elastic potential  vs. random environment 


• Low : follows a random walk with 


• High : polymer is "pinned" by random potential,  
(superdiffusion)


• In 1D, any finite  results in the low temperature/high  phase

∼ 1/ν ∼ β

νβ x ∼ t1/2

νβ x ∼ t2/3

β νβ
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Teacher-student scenario 
(Zdeborová & Krzakala, 2016)

• Teacher generates true state  then data  with teacher's parameters 

• Student receives only  and conducts Bayesian inference assuming student 

parameters  to generate posterior for inferred state 

• Joint distribution is





• At Bayes optimality ,  distributed identically to  ⇒ 

• Note that even with full knowledge of teacher's parameters perfect inference is 

not possible in general as data is still generated randomly

X* Φ T
Φ

S X

p(X, Φ, X*) = pS(X |Φ)pT(Φ |X*)pT(X*)

=
pS(Φ |X)pS(X)pT(Φ |X*)pT(X*)

pS(Φ)

S = T X X* x ∼ t1/2
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Planting
Unlike the original directed polymer the disorder is "planted" by the true path


 


At  coincides with the directed polymer


p(Φ) = ∑
X*

pT(Φ |X*)pT(X*)

∝ πT(Φ)∑
X*

exp [∑
t (−

1
2νT

(x*t − x*t−1)
2 +

ϵT

σ2
T

ϕx*t ,t)]
ϵT = 0
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Observables

Mean-squared error 


Overlap 

MSEt = 𝔼 [(xt − x*t )2]

Yt =
1
t

𝔼 [
t

∑
τ=1

δxτ,x*τ ]

17



"Free energy" profiles
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Fluctuations

• Crossover from Gaussian  to KPZ 

• No evidence of phase transition

∼ t1/2 ∼ t2/3

19



Root-mean-squared error

• Numerics points to finite  with any finite true/teacher signal 
strength 

RMSE(t)
ϵT
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Conjectured phase diagram
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Tree case

• At every timestep, move deeper into the tree with branching number k
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Directed polymer on a tree
Directed polymer on a tree studied via generalised random energy model (Derrida and 

Gardner, 1987) and travelling waves (Derrida and Spohn, 1988)


, where 


GREM: map energy of each spin configuration  to energy through a branch


Travelling waves approach: use recursive relation of partition function 

 and study the generating function 

Z = ∑
r1:t

exp [−βΨ(r1:t)] Ψ(r1:t) = ψr1,t + ⋯ + ψr1:t,t

{σ}

Z(t) = e−βϕ
k

∑
i=1

Z(i)(t − 1)

Gt(x) := 𝔼 [exp (−e−βxZ(t))]
23



Planted directed polymer on a tree

• Due to the structure of the tree, can choose any one to be the true path 



• Look at overlap with this path: fraction of time the inferred path is equal to 
the true path

r*1:t
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GREM approach
Separate 


Student's posterior  given by partition 
function





,  is the fractional overlap with true path


Each  is iid Gaussian distributed with variance 

ϕr1:τ,τ = ψr1:τ,τ + ϵTδr1:τ,r*1:τ

pS(r1:t |Ψ, r*1:t) = qS(r1:t |Ψ, r*1:t)/Z(Ψ, r*1:t)

Z(Ψ, r*1:t) = ∑
r1:t

exp [βΨ(r1:t) + βϵTty(r1:t, r*1:t)]
β = ϵS/σ2

S y(r1:t, r*1:t)

ψr1:τ,τ σ2
T

25



Relation to magnetisation on the GREM
Choose true path as the ferromagnetic configuration ⇒ overlap is magnetisation!


Write partition function in terms of partial partition function


 where  is another GREM


Use maximum a-posteriori approximation  


where  and 

Z(Ψ, r*1:t) = ∑
y

zy(Ψ)eβϵTyt zy(Ψ) = ∑
r1:t|y

eβΨ(r1:t)

lim
t→∞

f = max
y

fw

f =
1
t

𝔼Ψ [ln Z(Ψ)] fy =
1
t

𝔼Ψ [ln zy(Ψ)] + βyϵT
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Using results from Derrida, Spohn 1988
Original GREM has phase transition with 





"speed of front" 


 with  

β

1
t

𝔼
Ψ [ln zw (Ψ, r*1:t)] = (1 − w)βcβ

cβ = {
c(β)  if β ≤ βc

c (βc)  if β > βc

c(β) =
1
β

ln (k∫ dψπT(ψ)e−βψ) ∂
∂β

c(β)
β=βc

= 0

27






Resulting in


fy = (βϵT − [ ln k
β + βσ2

T

2 ]) y + C1  if β ≤ βc,

(βϵT − σT 2 ln k) y + C2  if β > βc,

ϵT

σT
=

ln k ( ϵSσT

σ2
S )

−1

+ 1
2

ϵSσT

σ2
S

 if 
ϵSσT

σ2
S

≤ 2 ln k

2 ln k  if 
ϵSσT

σ2
S

> 2 ln k
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Phase diagram on the tree

• Average overlap  given by  that minimises free energyYt→∞ y
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Outlook

• Phase transition in higher dimensions? (Offer, 2018)


• Analytic solution using machinery of 1D directed polymer


• Connection to quantum measurement-induced phase transitions (MIPT)


 is like ρt = MtUtρt−1U†
t M†

t qt = Tqt−1
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Traveling waves approach
Recursion for planted case is




Recall generating function 


Evolves as 

ZP (ϵT, t + 1) = eβ(ψ − ϵT) (Z(1)
P (ϵT, t) +

k

∑
i=2

Z(i)
P (0,t))

GϵT
(x, t) := 𝔼

Ψ [exp (−ZP (ϵT, t) e−βx)]
GϵT

(x, t + 1) = 𝔼
ψ [GϵT (x + ψ − ϵT, t) × G0 (x + ψ − ϵT, t)k−1]
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In the continuum limit generating function evolves as





: FKPP equation, with minimum speed of front


 evolves linearly with characteristic velocity  but also with  
"carrying" 

∂tGϵT
= D∂2

xGϵT
− ϵT∂xGϵT

− λ (1 − G0) GϵT

ϵT = 0

ϵT ≠ 0 ϵT G0
GϵT

32
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Both start with profile exp(e−βx)
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Using results from Derrida, Spohn 1988
 has phase transition with 


"speed of front" 


 with  


So speed of planted generating function is 

G0 β

cβ = {
c(β)  if β ≤ βc

c (βc)  if β > βc

c(β) =
1
β

ln (k∫ dψπT(ψ)e−βψ) ∂
∂β

c(β)
β=βc

= 0

v(ϵT) = max(ϵT, cβ)

35



 switches from 0 to 1 approximately at point 


At long times 


Assuming sublinear fluctuations in ,


GϵT
(x, t) β ̂x ∼ ln ZP(ϵT, t)

̂x(t) = max(ϵT, cβ)t

ln ZP(ϵT, t)

𝔼Ψ [ln ZP(ϵT, t)] = β max(ϵT, cβ)t
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From definition of overlap





• If ,  constant with  and 


• If ,  constant and 


Resulting in


Y =
1
βt

∂
∂ϵT

𝔼Ψ[ln ZP(ϵT, t)] =
∂

∂ϵT
vβ,ϵT

ϵT < cβ v(ϵT) ϵT Y = 0
ϵT > cβ v(ϵT) = ϵT Y = 1

ϵT

σT
=

ln k ( ϵSσT

σ2
S )

−1

+ 1
2

ϵSσT

σ2
S

 if 
ϵSσT

σ2
S

≤ 2 ln k

2 ln k  if 
ϵSσT

σ2
S

> 2 ln k
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