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Bayesian inference

Infer posterior distribution for state X given data @

p(@ | X)p(X)

X|®) =
pX|®) (D)

« p(®|X): "likelihood"/measurement model

e p(X): "prior"
. p(@) = Zp(CD | X)p(X): "evidence"/normalisation
X

In general X is high-dimensional
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Hidden Markov models

o) (o) (o)

« X = x,..: entire trajectory

« @ = ¢h,.;: measurements over all timesteps

Filtering: posterior for current state given history of measurements p(x,|¢@;.,)
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The planted directed polymer

1

Walker undergoes a random walk p(x, | x,_;) = Eéxt’xt—l + Zéxtil,xr- 1

Given walker position x, pixel of image at time ¢ distributed as

¢x,l‘ ~ ‘/V(Géx,xta 082)

o~ (ri—€d, )20 ; ,
SO p(¢l‘ | 'xl‘) = H \/ﬁ — 6—6/20' eGd)xt,t/O' ]z_(¢t)
o

7(¢h,) is the Gaussian measure

X



Connection to the directed polymer

1 2
Assuming that the kernel only depends on its distance, p(x,|x,_;) ~ e~ WX

1
Therefore the posterior is p(X | ®) = —q(X | D), where Z = Z q(X | @) and the
Z X
unnormalised posterior for entire trajectory is

g(X | ®) = exp [Z <—2iy<xt — %)%+ ﬂcbxt,t)] where = —

o

1
qx, | . = 2 q(X | @) evolves linearly with transfer matrix T, ., = e~ T ) by,

X1

X1—1



The directed polymer

The posterior looks formally identical to Boltzmann probability of the
directed polymer

Competition of elastic potential ~ 1/v vs. random environment ~ f

Low vf3: follows a random walk with x ~ 172

High vf: polymer is "pinned" by random potential, x ~ 2

(superdiffusion)

In 1D, any finite ff results in the low temperature/high v phase
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Teacher-student scenario
(Zdeborova & Krzakala, 2016)

« Teacher generates true state X** then data ® with teacher's parameters T

 Student receives only ® and conducts Bayesian inference assuming student

parameters S to generate posterior for inferred state X
« Joint distribution is

pX, ©, X*) = ps(X | P)pp(P | X*)pp(X*)
_ Ps(@ | X)ps(X)pr(P | X*)pp(X*)
ps(D)

. At Bayes optimality S = T, X distributed identically to X* = x ~ ¢!/

* Note that even with full knowledge of teacher's parameters perfect inference is
not possible in general as data is still generated randomly
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Planting

Unlike the original directed polymer the disorder is "planted” by the true path

p(®@) = ) pr(®@| X*)pp(X*)

X*
1 e w2, ET
ocer(CI))Zexp Z _2_(3% —x* ) t =P
X+ ; YT °T _

At et = 0 coincides with the directed polymer
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p(x¢|¢p.;) with ey = 1.50
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p(x¢|¢p.;) with ey = 0.10

0 50 100 150 200 250 300

16



Observables

Mean-squared error MSE, = [(xt — xt*)z]

1
Overlap Y, = 7[E Z "
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"Free energy" profiles

a) delta prior b) flat prior
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Fluctuations
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« Crossover from Gaussian ~ 12 to KPZ ~ %3
* No evidence of phase transition
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Root-mean-squared error

1.0
107 5 2/3 Q

I N -—-or=1
~
09 S or =10
’\\
S —2.064+0.06
. 0.8 10! . \.\ ~ €r
N §/ N
@ 10! 07 & A LN
= s o
0.6 N
0.5
10° 4
T o UL | UL | 0.4 T T T T T T
10° 10! 102 103 4 x 1071 6 x 1071 10°

t

« Numerics points to finite RMSE(?) with any finite true/teacher signal
strength ey
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Conjectured phase diagram
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Tree case

« At every timestep, move deeper into the tree with branching number &
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Directed polymer on a tree

Directed polymer on a tree studied via generalised random energy model (Derrida and
Gardner, 1987) and travelling waves (Derrida and Spohn, 1988)

7 = Z exp [_ﬂqj(’"lzt)]’ where W(r.,) = Wpd T T W

.t
GREM: map energy of each spin configuration {o} to energy through a branch

Travelling waves approach: use recursive relation of partition function
k

Z(t) = e PP Z Z9O(¢t — 1) and study the generating function
i=1
G(x) =L [exp (—e‘ﬁxZ(t))]
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Planted directed polymer on a tree

e Due to the structure of the tree, can choose any one to be the true path
3k
1:t

* Look at overlap with this path: fraction of time the inferred path is equal to
the true path
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GREM approach

Separate ¢, .=y, .+ €10,

%
ZT’rl:f

Student's posterior pg(7;.,| ‘P, r{‘ft) = qq(r1,| P, r*_t)/Z(‘P, r;‘ft) given by partition
function

29,1%) = 2 exp |[F¥(r,) + ferty(ry )
Il
p= €S/0'§, (7. r{‘ft) is the fractional overlap with true path

Each y, _is iid Gaussian distributed with variance 6%
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Relation to magnetisation on the GREM

Choose true path as the ferromagnetic configuration = overlap is magnetisation!

Write partition function in terms of partial partition function

Z(¥, ri) = Z Z (‘P)eﬂeTyt where z (V) = Z e?Y (14 is another GREM
Y rl:tly

Use maximum a-posteriori approximation lim f = maxf,
— o0 y

where f = %[E\P [ln Z(‘P)] and f, = %[E\P lln Zy(‘P)] + fyer
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Using results from Derrida, Spohn 1988

Original GREM has phase transition with /3

1 [m o (W rﬁt>] = (1 - w)fc,

Y

o {c(ﬂ) itp < B,
speed Of1 1ron Cﬂ= C(ﬂc) ifﬂ>ﬂc

=0
P=P.

c(f) = %m <k[dz/mT(t//)e‘ﬁ‘/’) with %c(ﬁ)
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Phase diagram on the tree
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 Average overlap Y,_,  given by y that minimises free energy
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Outlook

e Phase transition in higher dimensions? (Offer, 2018)
* Analytic solution using machinery of 1D directed polymer

e Connection to quantum measurement-induced phase transitions (MIPT)

Pr = MtUtpt—lU;rM: is like g, = 1q,_,
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Traveling waves approach

Recursion for planted case is

k
Zp (e, t+ 1) = Plv=en) (Z;}) (ert) + ) Z}P(Qt))

i=2
Recall generating function GGT(x, t):=[E [exp <_ Zp <€T, t) e—ﬁx)]
p

Evolves as

G. 6,1+ 1) =E |G, (x+y—ep1) x Gy (x+y—ep1) |
W
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In the continuum limit generating function evolves as

0,G,. = Do&G, —ed, G, —A(1-Gy) G

€T

et = 0: FKPP equation, with minimum speed of front

et # 0 evolves linearly with characteristic velocity et but also with G,
"carrying" G€T
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Using results from Derrida, Spohn 1988

G, has phase transition with f

NIRRT {c(ﬁ) 8 < B,
speea or 1ron Cﬂ: C(ﬂc> ifﬂ>ﬂc

=0
P=P.

c(f) = %m (del//ﬂT(qf)e‘ﬁ‘V) with %c(ﬁ)

So speed of planted generating function is v(e) = max(er, cﬁ)
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G, (x, 1) switches from 0 to 1 approximately at point X ~ In Zp(er, 1)
At long times X(f) = max(er, Cpt
Assuming sublinear fluctuations in In Zp(er, 1),

Ey [In Zp(er, 1)| = pmax(er, cy)t
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From definition of overlap

Y L9 Ewl[ln Zp(er, )] = 0

= ———[Ey[ln Zp(ep, )] = —v;,
thT ¥ Pt OGT Pex

. If ep < ¢p, v(€r) constant with ey and ¥ = 0

o Ifer > cy v(er) = erconstantand Y =1
T =~ Cp VAT T

Resulting in

1
lnk<€SGT> Lo 'fGSGT< 21nk

2
2 03 as

T\ /2Ink £S5 \/2Ink

S
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