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Abstract

Three growing network models (GNMs) are studied numerically using Monte
Carlo sampling and analytically using mean-field approximation. The first is the
Barabási-Albert (BA)/PurePref model, where new nodes are connected preferen-
tially connected to existing nodes with many preexisting links. The second is the
PureRand model, where there is no preference. The third is the Mixed model,
where node choice probability is chosen between the two models. Apart from red-
erivation of known results, our original contribution is as follows. We study the
node degree evolution directly instead of the steady state distribution, to find an
analytic form more accurate with number of edges added per timestep, m. We
confirm the results with numerics.
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1 Overview
This is a modified project report for the Masters-level course Complexity and Networks
that I took while I was at Imperial College London. Most of the results are known
results, but I had some new results using the methods of Sec. 1.4.2 to find a better
analytic form for scaling with m, the number of new links added to the new node at
each timestep. The resulting expressions are given by Eqs. (23), (35). We expect this to
work well for m ≫ 1, which we can confirm numerically for Figs. 8, 16. Note that the
report is very terse, and contain sentences without articles due to the strict word limit
that I had.

1.1 Growing Network Models
Growing Network Models (GNMs) are networks where new nodes are added and con-
nected to existing nodes with each timestep. Specifically, the Barabási-Albert/Pure
Preferential (BA/PurePref) Model attempt to describe citations in academic journals; it
displays fat-tailed degree distributions p(k) observed in data.

A simple graph G is specified by a growing set of nodes, each node with an index,
V = {1, 2, ..., |V|}, set of edges, E = {(i, j) | i, j ∈ V}, a set of unordered pairs.

The dynamics of a GNM is only determined by the degrees; therefore the networks
are random graphs (no correlation between nodes). In such circumstance G can be
described by V and set of degrees, K = {k1, k2, ..., k|V|}.

A GNM at time t is specified by V , and K, parameterised by number of edges added
per time-step, m, and node choice probability, Π(k). It is initialised with initial graph
G0. It is iterated as below:

1. Initialisation. Let initial state be G0, t = 0.

2. Node Addition.

• t → t+ 1.

• Add new node: {1, 2, ..., |V(t)|} → {1, 2, ..., |V(t)|, |V(t)|+ 1}

• Add m edges with one end of stub on new node k|V(t)|+1 = m,
and the other end with m existing nodes ki → ki + 1, chosen with Π(k).
Cannot choose the same node twice.

3. Iteration. Repeat Node Addition. until N = |V|.
For the BA/PurePref model, Π(k) ∝ k; for the PureRand model, Π(k) = const., and for
the mixed model, Π is chosen between the with ratio q respectively.

1.2 Numerical implementation
The model was implemented in Object-Oriented Python language. Aside from the
parameters required to describe the system, an additional list, called StubList, con-
tained each stub denoted by the index of the node. This is because choosing a random
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Value Predicted Measured

Npref,rand,mixd(t = 1000;N0 = 3) 1003 1003
p(1)/1 0.018 0.01821
p(2)/2 0.018 0.01817
p(3)/3 0.018 0.01814
p(4)/4 0.018 0.01821
p(5)/5 0.018 0.01818

Figure 1: Test results; #repeats = 1000000. All results match up with requirements

element in StubList should choose a node with probability proportional to its de-
gree. This method dramatically reduced code runtime.

1.2.1 Tests for Implementation

Various tests were done to validate the implementation. The first test validated the
number of nodes and stubs added per time step. The second validated the method of
choosing a random element of StubList really produced Π ∝ k for the BA model. If
working as intended, probability of choosing a node from StubList=[1,2,2,3,3,3,4,4,4,4,5,5,5,5,5],
divided by node index should give a constant value. Lastly, since implementation
closely followed derivations, indicates validity of implementation. The results of the
tests are summarised in Fig. 1

1.3 Master Equation
Assuming mean-field approximation, GNMs can be described by a master equation,
describing state of t+ 1 as function of state at t:

n(k, t+ 1) = n(k, t)
A

+mΠ(k − 1, t)n(k − 1, t)
B

−mΠ(k, t)n(k, t)
C

+ δk,m
D

, (1)

where n(k, t) is the number of nodes with degree k at t, Π(k, t) is the probability of
choosing a node with degree k. Each term is interpreted as below:
A: Number of nodes of degree k at time t.
B: Average number of nodes promoted to degree k.
C: Average number promoted from degree k to degree k + 1 and therefore removed
from degree k.
D: The new node is always added with degree m.

Assume that p(k, t) = n(k,t)
N(t)

. Substituting to (1),

p(k, t+1)N(t+1) = p(k, t)N(t)+mΠ(k−1, t)p(k−1, t)N(t)−mΠ(k, t)p(k, t)N(t)+δk,m.

Assume that as t → ∞, probability is steady. Noting that N(t+ 1) = N(t) + 1,

p∞(k) = +mΠ(k − 1)p∞(k − 1)N −mΠ(k, t)p∞(k)N + δk,m. (2)

Eq. (2) solved with Π(k, t) specified, by approximating it as an ODE, p∞,cont, or dis-
cretely, p∞,disc.
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1.4 Methods to approximate average largest node k1
k1(N ;m;G0) is defined as the largest node for a given N , averaged over the ensemble
of graphs. It can be approximated in two methods.

1.4.1 Infinite Probability Sampling

Assume that GNM samples from p∞ ∀ N , and that p∞ = n(k,N)
N

∀ N . For a GNM of size
N , on average, expect that the lowest probability represented is 1/N . Therefore k1 is
estimated by equating cumulative probability of [k1,∞] to 1/N . For p∞,cont,∫ ∞

k1

p∞(k;m)dk =
1

N
(3)

For p∞,disc,
∞∑
k1

p∞(k;m) =
1

N
(4)

1.4.2 Node degree evolution

The average number of stubs attached in an iteration is given by

1− (1− Π(ki(N), N)m) ≈ mΠ(ki(N), N) for Π ≪ 1. (5)

So
ki(N + 1) = ki(N) +mΠ(ki(N), N). (6)

So ki(N) is iterated from its initial degree. Nodes belonging to G0 will experience the
most iterations, so will have largest degree on average. For PurePref/Mixed models,
for m ≫ 1, expect nodes with the highest k’s gain ∼ 1 degree per iteration; therefore ex-
pect chance that nodes added later to overtake initial nodes be small, and tracking the
node of the highest degree in G0 should approximate k1. For m ∼ 1, expect significanct
chance that later nodes can overtake the initial nodes; expect deviation.

1.5 Choice of Initial Graph G0

All GNMs add m edges per iteration. To accommodate m edges at the first time step,
require

m ≤ N0, (7)

where N0 is initial number of nodes. N and E evolve as

N(t) = N0 + t = t

(
1 +

N0

t

)
⇒ N(t → ∞) = t, (8)

E(t) = E0 +mt = mt

(
1 +

E0

mt

)
⇒ E(t → ∞) = mt. (9)

Since long time limit is to be compared with data, want Eqs. (8), (9) to converge to long
time limit as fast as possible. Therefore aim to minimise N0, E0.
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For PurePref, Π(ki = 0) = 0. Therefore require ki(t = 0) > 0 ∀ i. It is also assumed that
p∞(k < m) = 0. Since there is a finite probability that nodes with ki(t = 0) < m stays
less than m, choose ki(t = 0) ≥ m. ki is limited by complete graph limit so have

m ≤ ki(t = 0) ≤ N0 − 1 ∀ i ∈ V0 (10)

Choosing graph with minimum N0 with requirement ki(t = 0) ≥ m, get complete
graph of N0 = m+ 1. All nodes have degree ki(t = 0) = k0 = m.

When investigating k1, choose complete graph of size N0 = 2m+1, with k0 = 2m. This
the minimally sized graph such that E = mN for all times. This is to ensure that form
of Π holds at all times for the PurePref and Mixed models.

2 Pure Preferential Attachment
2.1 Justification for Πpref

The naive choice for Π ∝ k is Πpref (k, t) =
k∑N(t)

i=0 ki(t)
. Since

∑N(t)
i=0 ki(t) = 2E(t),

Πpref (k, t) =
k

2E(t)
. (11)

However, this does not take into account the chance to pick a same node again. Con-
sider the probability to choose the same node twice with the proposed Πpref (k, t). Not-
ing that E(t) = E0 +mt,

Πpref,twice(k, t) =

(
k

E0 +mt

)2

.

The maximum possible degree, kmax has degree N − 1. Since N(t) = N0 + t, kmax(t) =
N0 − 1 + t. So t ≫ 1, Πtwice(k, t) scales like

Πpref,twice(kmax, t) ∝
t

t2
=

1

t

which goes to zero as t → ∞. Therefore argue that Eq. (11) is valid as t → ∞.

2.2 Long Term Probability p∞,pref(k) Derivation
Consider Eq (2). Under long time limit or tuned G0, E = mN , so Πpref (k, t) = k

2mN
.

Then
ppref,∞(k) =

(k − 1)p∞(k − 1)

2
− kp∞(k)

2
+ δk,m. (12)

2.2.1 Continuous Solution

Rearranging,

ppref,∞(k) = −1

2

(
kppref,∞(k)− (k −∆k)ppref,∞(k −∆k)

∆k

)
+ δk,m,→ −1

2

∂ (kppref,∞(k))

∂k
.
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where ∆k := 1. For k ≫ 1 ⇒ ∆k ≪ k, since above expression tends to a differential
and boundary condition δk,m ignored as k ≫ m > 1.

Substituting trial solution ppref,∞(k) = Ak−γ , find that γ = 3. Since there can be no
nodes with degrees < m, require normalisation∫ ∞

m

ppref,∞(k)dk =

∫ ∞

m

Ak−3dk = A

[
−1

2
k−2

]∞
m

= 1 ⇒ A = 2m2

ppref,∞(k) = 2m2k−3 ; k ≥ m (13)

2.2.2 Discrete Solution

Return to Eq. (12). Consider when k > m. Rearranging,

ppref,∞(k)

ppref,∞(k − 1)
=

k − 1

k + 2

Use that
f(z)

f(z + 1)
=

z + a

z + b
⇒ f(z) = A

Γ(z + 1 + a)

Γ(z + 1 + b)
(14)

where a, b, A are some constants and Γ(z) is the Gamma function. For p∞,pref (k), a = −1, b = 2.
Then

ppref,∞(k) = A
Γ(k)

Γ(k + 3)
=

A

k(k + 1)(k + 2)
. (15)

To normalise, consider Eq. (12) for k = m. Any new node must have k ≥ m, so only
initial nodes can have degree k < m. At long time limit, the proportion of these go to
zero, so ppref,∞(k < m) = 0:

ppref,∞(m) =
������������:0
m− 1

2
ppref,∞(m− 1)− m

2
ppref,∞(m) + 1 ⇒ ppref,∞(m) =

2

2 +m
(16)

Probability must sum to unity:

1 =
∞∑

k=m

ppref,∞(k) =
2

2 +m
+ A

∞∑
k=m+1

1

k(k + 1)(k + 2)
=

2

2 +m
+ A · S∞ (17)

Decomposing S∞ by partial fraction and considering the (n+2)th term, can see that the
sum tends to

S∞ =
1

2(m+ 1)(m+ 2)
. (18)

Combining Eqs. (17), (18),

1 =
2

2 +m
+ A

1

2(m+ 1)(m+ 2)
⇒ A = 2m(m+ 1).

It is easy to show that Eq (16) is equal to Eq (15) for k = m. Therefore

ppref,∞,disc(k;m) =
2m(m+ 1)

k(k + 1)(k + 2)
; k ≥ m (19)
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2.3 Comparing p̃pref(k;m;N) with p∞,pref(k;m)

The BA Model was simulated for fixed N = 10000 and m = [2, 4, 8, 16, 32].

Since the measured probability, p̃pref (k;m;N), is to be compared with p∞,pref (k;m),
maximum possible N should be used. N = 10000 provided large enough scale-free
region while keeping runtime short enough to allow many repeats. m’s were chosen
to be powers of two to cover log-space evenly. Higher m means more choices and
therefore longer runtime, so only went up to 32. This was the case for later sections as
well.

p̃pref (k;m;N) is fat-tailed; it has features in low p. Resolution of the low p’s was im-
prove via two methods.

• Repeats: Every run, the degree series was frequency-counted, with frequency
counted as zero if no events. Over multiple runs, the frequency lists were av-
eraged. If degree series were to be simply summed and binned, then the re-
sult would bias small probability events, since for a N -sized sample, the min-
imum measured probability is 1/N ; so probabilities < 1/N would be boosted.
#repeats = 1000 was used unless specified otherwise.

• Log-Binning: Since many k ≫ 1 had zero frequency, points were binned where
the jth bin covers interval [aj, aj+1), for scale parameter a. For proper normalisa-
tion, bins with zero counts were thrown away. a = 1.05 was used for all the plots
unless specified otherwise. (Code from Complexity Project was edited and used)
The effect of log-binning is demonstrated in Fig. 8.

Figure 2: Plot of p̃pref (k;m = 4;N = 10000)
with #repeats = 1000, w/o log-binning (blue) and
w/ log-binning, a = 1.05 (green). Many repeats
mean resolution is already good; noise is reduced
by log-binning.

Figure 3: Plot of p̃pref (k;m = 4;N =
10000), compared with ppref,∞,cont(k;m) and
ppref,∞,disc(k;m). Note that discrete solution
agrees better with data especially at low k. This
was true for all three models

p̃pref (k;m;N) is compared with Eqs. (13), (19) in Fig. 3, which shows that discrete
solution more closely resembles the data. This was the case for all GNMs; discrete
solution was used for later sections.
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p̃pref (k;m;N = 10000) and ppref,∞,cont(k;m) for different m’s are log-log plotted in Fig 4.
The plot reveals two regions: the scale-free region, where p̃ follows p∞, and the finite-
size scaling region, where a characteristic ‘bump’ is seen, followed by a cut-off. The
cutoff is explained by finite size effects. The bumps, which increases with m, can be
explained by recalling argument of Sec. 1.4.2: For m ≫ 1, expect that initial nodes will
not be overpassed by added nodes, so initial nodes will have a higher degrees than
ones added, resulting in a more pronounced bump.

Figure 4: p̃pref (k;m;N) overlayed by
p∞,pref (k;m) for N = 10000,#repeats = 1000.
Discrete solution fits the data well up to the scaling
region. The heights of characteristic ‘bumps’
increase with m.

Figure 5: R2 value from Pearson’s R-Test on Eq.
(20), test done on [m, k] of dataset. Note a good
R value followed by a drop when including cut-off
points.

many standard statistical tests were considered. Chi-square test requires frequencies of
≥ 5, so data must be binned. However binning loses redolution near cut-off. Visually,
a poor fit is seen after the scaling region, so a test that considers regions at a time was
required. KS test can only consider entire distributions so was not used.

If two distributions agree,
ln(p∞) vs. ln(p̃data) (20)

should result in a straight line. However this test does not provide p-values. A Pear-
son’s R test on was conducted on Eq. (20) for various ranges up to k. The result is
plotted in Fig. 5.

From the figure it can be seen that the R2 value is 1 (3 s.f.) when not including the
finite-size scaling region, but drops when included. This indicates that p∞ is a good fit
up to the scaling region.

2.4 k1 Derivation
Using methods of Sec. 1.4.1, the continuous estimation finds∫ ∞

k1

ppref,∞(k;m)dk = m2k−2
1 =

1

N
⇒ k1,pref = m

√
N , (21)
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discrete estimation finds
∞∑
k1

ppref,∞(k;m) =
m(m+ 1)

k1(1 + k1)
=

1

N
⇒ k1,pref =

1

2

(√
4m(m+ 1)N + 1− 1

)
(22)

→ m
√
N for m ≫ 1, N ≫ 1. Using methods of Sec. 1.4.2,

ki(N + 1) ≈ ki(N) +
��mki(N)

2��mN
⇒ ki(N + 1)

ki(N)
=

2N + 1

2N
⇒ k1(N) = k1(N0)

N−1∏
j=N0

2j + 1

2j

k1,pref (N) ≈ k1(N0)
Γ(N + 1/2)

Γ(N)

Γ(N0)

Γ(N0 + 1/2)
≈ 2m

√
N

Γ(2m+ 1)

Γ(2m+ 1.5)
→

√
2mN (23)

(For m ≫ 1, N ≫ 1, since z → ∞, Γ(z+α)/Γ(z) → zα, and assuming N0 = 2m+ 1, k1(N0) = 2m).
It predicts a different scaling for m.

Setting Y := ln(k1,pref ), X := ln(N), for N ≫ 1, all three derivations predict that

k1,pref (N ;m) ∝
√
N ⇒ Y =

1

2
X + const.(m) (24)

which should result in a gradient of 0.5.

2.5 k̂1 Data Comparison

2.5.1 Measuring k̂1

k̂1 was estimated by running a simulation with the same parameters, recording the
highest degree every run, and taking the mean and the standard deviation as the mea-
sured value and errors respectively. An example of the measured distribution for
m=4,N=10000 is shown in Fig 6. From the figure it can be seen that the distribution
is skewed to the right. This is expected due to the preferential attachment nature of
the system; if a node gets an advantage, it would snowball since it now has a greater
chance of being chosen.

2.5.2 Scaling with N

Shown in Fig. 7, Eq. (24) was plotted and fitted to a linear function for m = 4, N =
[500, 1000, ..., 32000]. The slope was measured to be 0.503 with R of 1 to 2 decimal
places. The result agrees with the theoretical predictions.
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Figure 6: Example of a distribution of measured
k1’s with #repeats = 1000. It is a widely peaked,
skewed distribution. The skew is explained by
‘win-more’ nature of attachment probability.

Figure 7: log-log plot of k̂1 vs. N . The data
matches expected slope of 0.5 to two significant fig-
ures. high R2 indicates a good fit.

2.5.3 Extension: Scaling with m

The three predictions for k1 were tested against m for N = 10000, #repeats = 50. The in-
finite probability estimations are not good fits but the node degree evaluation method
aligns for high m. This agrees with the predictions of Sec. 1.4.2, since derivation was
only valid for m ≫ 1.

Figure 8: Measured scaling of k1 with m for N = 10000 compared to the three derivations. Node
Degree Evolution method is best, with better accuracy as m increases, as predicted.

2.6 Data Collapse and Investigation in G0

2.6.1 Data Collapse Derivation

From the data of Fig. 4, it can be seen that the system displays scaling behaviour with
a cutoff. Figure also shows that different m’s give different ‘bumps’. So, employ Finite-
Scaling Ansatz (FSA) used to explain other power-law distributions with cutoffs:

p(k;m;N) = p∞(k) F
(

k

k1
;m

)
(25)
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where the scaling function F behaves as

F (x;m) =

{
F0 + F1x+ ... x ≪ 1

decaying rapidly x ≫ 1
(26)

and k1 is the cutoff degree.

In from derivation and data, it was shown that k1 ∝
√
N ⇒ k1 = const.(m)

√
N for

some constant b. Substituting for p∞,pref and rearranging, and defining Y = k(k + 1)(k + 2)p(k;m;N)
and X = k√

N

Y = F
(

Y

const.(m)
;m

)
(27)

If FSA is valid, then expect a data collapse with Eq. (27).

2.6.2 p̃(k;m;N) vs. N and Data Collapse

p̃(k;m;N) was plotted for m = 3, N = [1000, 2000, 4000, 8000, 16000] are plotted in Fig.
9, and collapsed in Fig 10. The points line up, indicating that Eq. (27), FSA, is valid.

Figure 9: p̃pref (k;m;N) vs. N for m = 3. See
that cut-off regions shifts as N increases.

Figure 10: A good Data Collapse of
p̃pref (k;m;N) vs. N for m = 3. Indicates
that FSA was valid.

2.6.3 Extension: Effect of G0 and Data Collapse

The effect of initial conditions was also studied. For m = 3, N = 1000, all starting
nodes were set to degree k0 = m. N0 was varied as N0 = 4, 8, 16, 32. The results are
plotted in Fig. 11. Figure shows that as N0 increases, the scale-free region becomes
smaller. this confirming the prediction of Sec. 1.5: if N0 is large, it would take longer
for the system to reach the long time limit. Also see that the size of the ‘dips’ become
larger with N0. Region up to the dip represents contributions only by added nodes.
Because the number of head-started initial nodes, N0 increases, added nodes receive
less then they would if there were less initial nodes, resulting in a dip in probability.
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Figure 11: p̃pref (k;m=3,N=1000,k0=m,N0) vs. k
for various N0’s. ‘Dips’ become more pronounced
with N0 as later added nodes receive smaller pro-
portion of nodes, and amplified by ‘win-more’ node
addition.

Figure 12: Data Collapse for
p̃pref (k;m=3,N=1000,k0=m,N0),
N = [1000, 2000, ..., 8000]. A separate data
collapse for each N0 indicates that scaling function
F is a function of G0.

For each N0, N was varied as N = [1000, 2000, ..., 8000], and data was collapsed, as
shown in Fig 12. For each N0, there is a good separate data collapse. This indicates that
F is also a function of the initial conditions. Amend FSA, Eq. (25):

p(k;m;N) = p∞(k) F
(

k

k1
;m;G0

)
(28)

3 Pure Random Attachment
3.1 Justification for Πrand

A constant, normalised Πrand is

Πrand(k, t) =
1

N(t)
. (29)

Check probability to pick twice:

Πrand,twice(k, t) =
1

N(t)2
=

1

(N0 + t)2

this scales as 1
t2
→ 0 as t → ∞. Eq (29) is valid as t → ∞.

3.2 Long Time Probability p∞,rand(k) Derivation
Using Eqs (2), (29),

prand,∞(k) = m (prand,∞(k − 1)− prand,∞(k)) + δk,m. (30)

3.2.1 Continuous Solution

As Sec. 2.2.1, rearrange to find

prand,∞(k) = −m

(
prand,∞(k)− prand,∞(k −∆k)

∆k

)
+ δk,m.
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Where ∆k = 1. For k ≫ m > 1, approximate as PDE

prand,∞(k) = −m
∂prand,∞(k)

∂k

The trial solution prand,∞(k) = Ae−k/m fulfills the requirement of the PDE. Normalising,∫ ∞

m

prand,∞(k)dk =

∫ ∞

m

Ae−k/mdk = A
[
−me−k/m

]∞
m

= 1 ⇒ A =
e

m

prand,∞,cont(k) =
e1−k/m

m
; k ≥ m. (31)

3.2.2 Discrete Solution

Consider Eq. (30) when k > m. Rearranging,

prand,∞(k)

prand,∞(k − 1)
=

m

m+ 1
,⇒ prand,∞(k) = prand,∞(m)

(
m

m+ 1

)k−m

Now consider k = m:

prand,∞(m) = m(
���������:0
prand,∞(m− 1)− prand,∞(m)) + 1 ⇒ prand,∞(m) =

1

m+ 1
.

prand,∞,disc(k) =
1

m+ 1

(
m

m+ 1

)k−m

; k ≥ m (32)

Check normalisation; summing all probabilities,

∞∑
k=m

prand,∞(k) =
1

m+ 1

∞∑
k′=0

(
m

m+ 1

)k′

=
1

m+ 1

1

1−
(

m
m+1

) = 1,

as required, since it is infinite geometric series.

3.3 Comparing p̃rand(k;m;N) with p∞,rand(k;m)

p̃rand(k;m;N) for same parameters as Sec 2.3 are plotted along with the discrete pre-
diction (32) and shown in Fig. 13, with the R2 value of Eq. (20) fitted to the different
parts of the distribution, shown in Fig. 14. As before, there appears to be cutoff due to
system size. Secondly, note that with the same parameters, the PureRand model cuts
off faster, at ∼ 102 compared the PurePref model ∼ 103. The distribution is smaller
tailed.
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Figure 13: p̃rand(k;m;N) overlayed by
p∞,rand(k;m), same parameters as before.
The ‘bumps’ are less pronounced compared to
PurePref. Cut-off is sharper than PurePref, and
finite-size effects are difficult to discern.

Figure 14: R2 value from Pearson’s R-Test on Eq.
(20), test done on [m, k] of dataset. Note a good
R value followed by a drop when including cut-off
points.

3.4 k1 Derivation
Using methods of Sec. 1.4.1, the continuous estimation was found to be∫ ∞

k1

prand,∞(k;m)dk = e1−k1/m =
1

N
⇒ k1,rand = m(1 + ln(N)) (33)

with the discrete case

∞∑
k1

prand,∞(k;m) =

(
m

m+ 1

)k1−m

=
1

N
⇒ k1,rand =

ln(N)

ln(m+1
m

)
+m (34)

Using methods of Sec. 1.4.2,

ki(N + 1) ≈ ki(N) +
m

N
⇒ ki(N) = ki(N0) +m

N−1∑
j=N0

1

j

Using approximation of harmonic numbers,
∑N

a=1 1/a ≈ ln(N) ; N ≫ 1,

k1,rand(N) ≈ ki(N0) +m ln

(
N − 1

N0 − 1

)
→ 2m+m ln

(
N

2m

)
(35)

For N ≫ 1 and assuming N0 = 2m+ 1, k1(N0) = 2m.

All three derivations indicate for N ≫ m > 1, k1,rand ∝ ln(N). Letting Y = k1, X =
ln(N), expect

Y = const.(m)X (36)

which should give a good fit to linear regression.
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3.5 k̂1 Data Comparison
3.5.1 Scaling with N

Eq. (36) was plotted and linearly regressed in Fig. 15, with R2 = 1.0 for 2 significant
figures. This validates the derivations.

Figure 15: semilog-x plot of k̂1 vs. N . Linear
regression finds a High R2 value which indicates
straight line is a good fit; prediction of scaling is
valid.

Figure 16: Measured scaling of k1 with m for
N = 10000 compared to the three derivations.
Node Degree Evolution method is best, with good
accuracy.

3.5.2 Extension: Scaling with m

Similarly, the scaling with m was investigated, with a similar result showing that de-
gree evolution method gave the best prediction, and getting better with m.

3.6 Data Collapse
3.6.1 Data Collapse Derivation

Using the amended FSA. Eq. (28), with k1,rand(N) ∝ ln(N) ⇒ k1,rand(N) = const.(m) ln(N)

substituting for p∞,pref and rearranging, and defining Y =
(

m
m+1

)−k
p̃rand(k;m;N) and

X = k
ln(N)

, expect

Y = F
(

X

const.(m)
;m;G0

)
(37)

3.6.2 p̃(k;m;N) vs. N and Data Collapse

With the same parameters as PurePref model, p̃rand(k;m;N) vs. N was plotted shown
in Fig. 17 and data collapsed in Fig. 18. The spike shown at the edge of Fig. 18 is
explained by poor resolution at the tails.
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Figure 17: p̃rand(k;m;N) vs. N for m = 3. Cut-
off is difficult to see as even the long time probabil-
ity has sharp cut-off.

Figure 18: A good Data Collapse of
p̃rand(k;m;N) vs. N for m = 3. Indicates
that FSA was valid. The form of the bare scaling
function is seen, which was hidden before.

4 Mixed Preferential and Random Attachment
4.1 Justification for Πmix

Π for Mixed Attachment Model is given by

Πrand(k, t) = qΠpref (k, t) + (1− q)Πrand(k, t).

where q is the ratio of preference. Substituting Eqs. (11), (29), assuming long term limit
or tuned E = mN ,

Πmixd(k, t) =
q

2mN(t)
+

1− q

N(t)
(38)

Can show that Πmix,twice ∝ 1/t → 0 as t → ∞.

4.2 Long Term Probability p∞,mix(k) Derivation
Using Eqs (2), (29),

pmix,∞(k) = mpmix,∞(k − 1)

[
q(k − 1)

2m
+ (1− q)

]
−mpmix,∞(k)

[
qk

2m
+ (1− q)

]
+ δk,m.

(39)

4.2.1 Continuous Solution

Rearranging,

pmix,∞(k) = −q

2

[
kpmix,∞(k)− (k −∆k)pmix,∞(k −∆k)

∆k

]
+m(1−q)

[
p∞(k)− p∞(k −∆k)

∆k

]
+δk,m.

∆k := 1. which for k ≫ m > 1, tends to

pmix,∞(k) =
−q

2

∂(kpmix,∞(k))

∂k
−m(1− q)

∂pmix,∞(k)

∂k
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This is an ODE with the standard result

pmix,∞(k) = A(2m(1− q) + kq)−(2/q+1)

Normalise:∫ ∞

m

pmix,∞(k) = A

∫ ∞

m

(2m(1− q) + kq)−(2/q+1) = 1 ⇒ A = 2(m(2− q))2/q

pmix,∞,cont(k) = 2(m(2− q))2/q(2m(1− q) + kq)−(2/q+1) ; k ≥ m (40)

4.2.2 Discrete Solution

From Eq (39), consider the case k > m. Rearranging,

pmix,∞(k)

pmix,∞(k − 1)
=

k + (2m(1/q − 1)− 1)

k + (2m(1/q − 1) + 2/q)

Similarly to Sec. 2.2.2, this has the solution of Eq. (14) with a = 2m(1/q − 1) − 1 and
b = k + [2m(1/q − 1) + 2/q. So the solution has the form

pmix,∞(k) = A
Γ(k + 2m(1/q − 1))

Γ(k + 2m(1/q − 1) + 2/q + 1)
(41)

for k > m. Now consider k = m to find

pmix,∞(m) =
2

2 +m(2− q)
(42)

Find A by summing over probabilities:

∞∑
k=m

pmix,∞(k) =
2

2 +m(2− q)
+ A

∞∑
k=m+1

Γ(k + 2m(1/q − 1))

Γ(k + 2m(1/q − 1) + 2/q + 1)
= 1

the infinite series can be found to be

S∞ =
(2 + q +m(2− q))Γ (1 +m(2/q − 1))

Γ (2 + 2/q +m(2/q − 1))

to find

A(m, q) =
2m(2− q)

(2 +m(2− q))(2 + q +m(2− q))

Γ(2 + 2/q +m(2/q − 1))

Γ(1 +m(2/q − 1))
(43)

Setting k = m, (41) is equal to (42). So the discrete solution is

pmix,∞,disc(k) = A(m, q)
Γ(k + 2m(1/q − 1))

Γ(k + 2m(1/q − 1) + 2/q + 1)
; k ≥ m (44)
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4.3 Comparing p̃mix(k;m;N) with p∞,pref(k;m)

For q = 0.5, with the rest of the parameters identical to Sec. 2.3, the Mixed model was
run for different m’s, with the resulting distribution plotted alongside Eq. (44) on Fig.
19. Note that the mixed model cuts off in between the two models, around 102 ∼ 103.
Intuitively, this is expected as this model is a ‘mix’ of the two models.

The R2 value fitted to different parts of the distribution is shown in Fig. 20, showing a
good fit for the scale-free region.

Figure 19: p̃mix(k;m;N ; q = 0.5) overlayed by
p∞,rand(k;m; q = 0.5), same parameters as before.
p∞,mix,disc(k;m) is a good fit until scaling region.
Cut-off is in between PureRand and PurePref.

Figure 20: R2 value from Pearson’s R-Test on Eq.
(20), test done on [m, k] of dataset. Note a good
R value followed by a drop when including cut-off
points.
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