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Abstract
The study of wave propagation through structured periodic media depends critically upon the
periodic lattice from which the medium is constructed. That is unsurprising, but perhaps what
is slightly more surprising, is that pieces of pure mathematics play a key role - in particular,
group and representation theory. Group theory is the natural language that encodes the sym-
metries of shape and form. Here we use it to consider a class of 2D periodic crystals whose
lattice is encoded by nonsymmorphic space groups. These are often overlooked due to their
relative complexity compared to the symmorphic space groups. We demonstrate that nonsym-
morphic groups have possible practical interest in terms of coalescence of dispersion curves,
Dirac points and band-sticking, using both theory and simulation. Once we’ve laid out the
group theoretical framework in the context of the nonsymmorphic crystals, we use it to illus-
trate how accidental degeneracies can arise in symmorphic square lattices. We combine this
phenomenon with topological valley effects to design highly-efficient topological waveguides
and energy-splitters.
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1 Introduction
From quantum mechanics to the study of optical devices based on photonic crystals and me-
chanical waves through so-called platonic crystals, wave-like systems are ubiquitous in nature.
Many also exhibit crystalline structure - that is, the system repeats itself in space, and trans-
lating the entire lattice by any Bravais lattice vector, t, leaves the system indistinguishable from
before.

These systems can be described and interpreted using dispersion relations, the relationships be-
tween the angular frequency ω and wavevector k of the propagating wave. These lead to
dispersion curves that are used throughout the periodic media community, often used prac-
tically as part of the design of devices. Many numerical schemes have been devised for their
accurate computation. Specific, frequency dependent features are often desired and during the
design process these curves must be re-computed depending on the lattice, material constants
and other parameters. Group and representation theory are powerful tools because they can
predict properties of dispersion curves based purely on the symmetries, regardless of the type
of system at hand. Importantly, this means that symmetry-induced effects are universal across
different systems and a full understanding then circumvents, or aids, in the identification of
desirable features.

One such wave-like system is the Mass-Loaded Kirchhoff-Love (MLKL) equation. Physically,
it describes flexural waves on a 2D thin elastic plate with pinned point masses. This is an ab-
straction, and entry-level model, of many real physical mechanical wave systems - for instance
of vibration modes on the thin metal skin of an aircraft [1] or waves on thin ice sheets [2].

The dimensionaless, simplified MLKL equation is given by

∇4Ψ(x, τ) =
(

1 + V (x)
)∂2Ψ(x, τ)

∂τ2
, (1.1)

where Ψ(x) is the displacement of the flexural wave with position x and time τ and V (x) =∑
t

∑
pM

(p)δ(x − x(p) − t) is the contribution from point masses, each positioned relative to
the lattice at x(p), and repeated infinitely over lattice vectors t.

Using separation of variables, the general solution can be taken in the form Ψ(x, τ) = ψ(x)e−iωτ

where this harmonic behaviour is henceforth considered understood. Then in terms of the
frequency, ω, equation (1.1) becomes

∇4ψ(x) =
(

1 + V (x)
)
ω2ψ(x), (1.2)

which is an eigenvalue equation. This article will focus on MLKL systems with 2D nonsymmor-
phic symmetries. Nonsymmorphic symmetries in 2D crystals, as will be explained later, con-
tain glide reflections, which have not only rotations and reflections, but also contain fractional
lattice translations. All four symmetries will be studied computationally while theoretically,
two space groups will be studied in depth: p4g and pgg.

2 Nonsymmorphic Group Theory
In this section we outline key group theoretical concepts focused on nonsymmorphic crystals,
but which can be applied to symmorphic ones as well.

When analysing wave propagation through periodic media, the dispersion relation (relation-
ship between the frequency and wavevector) is crucial. Exotic wave phenomena can be seen
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directly from the dispersion curves. For example, degenerate curves are associated with the
perfect transmission of waves through the medium; whilst gaps in the frequency spectrum,
known as band-gaps, forbid the propagation of waves. The apriori prediction of degenera-
cies and band-gaps is of great physical interest; hence this motivates a first-principles group
theoretical approach to analyse waves in periodic media.

Specifically, we shall seek to apriori predict the degree of degeneracies as well as the symme-
tries of their eigensolutions (which represent the displacement of the medium). Thereafter,
we shall systematically break these degeneracies, by reducing the symmetries of the system,
thereby yielding band-gaps. Near the periphery of these band-gaps we shall demonstrate novel
anisotropic behaviour.

The degree of the degeneracy is equal to the dimension of the irreducible representation (which
will be defined later on); this section primarily focuses on the derivation of these irreducible
representations thereby allowing us to characterise the degeneracies for nonsymmorphic crys-
tals.

2.1 Seitz notation
When describing affine transformations, where an object is actively rotated/improperly rotated
then shifted, it is useful to use Seitz notation, where for a position vector x,

{α | a}x := αx+ a, (2.1)

where Greek letters are used for unitary matrices. For a function f(x), since the function itself
is rotated and shifted instead of the coordinate system,

ˆ{α | a}f(x) = f({α | a}−1x) = f({α−1 | −α−1a}x) = f(α−1x−α−1a). (2.2)

It is easy to show that these Seitz operators obey an algebra as below:

{α | a}{β | b} = {αβ | αb+ a}; {α | a}−1 = {α−1 | −α−1a}. (2.3)

2.2 Representation theory
Consider the eigenvalue problem

Ĥψ(x) = λψ(x), (2.4)

where Ĥ is an operator, called the Hamiltonian (a homage to quantum mechanics), and ψ(x) is
some solution to be determined. Now consider a set of operators {ĝ}g (where subscript denotes
what is being iterated) that commutes with the Hamiltonian, [Ĥ, ĝ] = 0, and form a group.

Representation theory tells us that the solutions of the partial differential equation belong to
an irreducible representation (hereafter referred to as irrep) D(n) of {ĝ}g, and that the solutions
transform as

ĝψ
(n)
i (x) =

n∑
j=1

D
(n)
ji (g)ψ

(n)
j (x), (2.5)

where D(n)
ji (g) is entry ji of the irrep D(n) of element g of {ĝ}g, and {ψ(n)

i (x)}i are the basis
functions of D(n) [7].
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From this we can see that n-dimensional irreducible representations will guarantee a n-fold
degeneracy for a particular λ, as there will be n basis functions for the same λ. This is called
symmetry induced degeneracy, normally just referred to as degeneracy. However, it could be that
two irreps simply happen to share the same λ; this case is called accidental degeneracy and will
be studied in section 5. Eq. (2.5) which relates the symmetry operators, ĝ, with the irrep matrix
D(n)(g) and the basis functions ψ(n)

i (x), is imperative and will be used throughout this project.

2.3 Blochs theorem
When dealing with periodic systems, the eigenvalue problem, Eq. (2.4), is greatly simplified.
Consider a two-dimensional system with wavelike solutions,

Ĥ(x)ψ(x) = ωmψ(x), (2.6)

where Ĥ is the Hamiltonian, ωm is the angular frequency raised to some power (power de-
pending on the system), and ψ is the wavelike solution with x being the coordinate vector.

If a system is periodic, it means that the system is invariant under any discrete lattice translations
by

t = n1a1 + n2a2, (2.7)

for ni ∈ Z and where ai are primitive lattice vectors, as illustrated in Fig. 1. Mathematically,
this is represented as the Hamiltonian commuting with translation operators, [Ĥ, ˆ{1 | t}] = 0.

Figure 1: An illustration of a periodic medium with translational symmetry. a1, a2 represent lattice
translations along the x and y axes, respectively.

It can be shown, through Bloch’s theorem (which uses representation theory), that such systems
have Bloch wave solutions:

ψn,k(x) = e−ik·xun,k(x), (2.8)

where we label the solutions with band index n and wavevector k, and un,k(x) = un,k(x± t)
contains the symmetry of the crystal [7].

Eq. (2.8) will be crucial in the subsequent subsection, and will be used to define the subgroup
of a crystal’s space group, as well as to reduce the domain of wavevectors in reciprocal space.
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2.4 Translation Subgroup T

The translational operators
{

ˆ{1 | t}
}
t

form a group, called the translational group, T . For a

given k, ψn,k(x) is the basis function for the D(k)
T = {e−ik·t}t one-dimensional irrep of T , since

ˆ{1 | t}ψn,k(x) = e−ik·tψn,k(x), (2.9)

which fulfills the requirement of a basis function, since ψn,k(x) is an eigenfunction of the trans-
lation operator.

Another consequence of the translational symmetry is that the wavevector, k, can be reduced
into a restricted area within reciprocal space, namely, the First Brillouin Zone (FBZ); this greatly
simplifies the eigenvalue problem. Physically, this implies that two wavevectors, seperated by
a reciprocal lattice vector, are equivalent.

k⇔ k +K, (2.10)

whereK = m1b1 +m2b2 is the reciprocal lattice vector, such that ai · bj = 2πδij .

In this subsection, we’ve demonstrated that Bloch’s theorem gives rise to a translation sub-
group, T , aswell as how it is used to simplify the eigenvalue problem by reducing the domain
of the problem(equation (2.10)).

2.5 Nonsymmorphic space groups

2.5.1 Identifying nonsymmorphic groups

In addition to the translational symmetries, the system may be invariant under other affine
operators,

{
ˆ{α | a}

}
{α|a}

. Together, these affine transformations and the translations, form a

group called the space group, G. An example of a space group, pmg, is shown in Fig. 2.
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Figure 2: An illustration of a periodic medium with pmg symmetry. Filled green squares indicate the
unit cell, while the dotted squares indicate the smallest pattern the unit cell can be made out of. mx,my

denote reflections in the x and y axis respectively, and C2 denote a 180°rotation.

Any element {α | a} of the space group can always be decomposed into primitive lattice
vectors and non-primitive ones:

{α | a} = {1 | t}{α | v}, (2.11)

where v represents a fractional translational vector.

Note that we can shift the origin of the transformation by a similarity relation,

{α | v} → {α′ | v′} = {1 | b}{α | v}{1 | b}−1 = {α | v + b−αb}, (2.12)

where b the shift transformation. To try to set v′ = 0, we let

b = (1−α)−1v. (2.13)

However, if (1 − α) is singular, fractional translations cannot be removed by changing the
origin. We define space group G to be symmorphic if (1−α) is not singular for all α. If this is
the case then every element can be decomposed into {1 | t}{α | 0}; hence, G is a semi-direct
product of T and a point group, P , G = T o P .

Conversely, G is non-symmorphic if there exist some α such that (1 − α) is singular, and in
general elements are {1 | t}{α | v}, where v is a fractional translation.

2.5.2 Translation subgroups of the nonsymmorphic groups

The translational subgroup T is an invariant subgroup of G, so G can be decomposed into
cosets of T :

6



G = T · r1 + ...+ T · rs; r1 := {1 | 0}, (2.14)

where {ri}i are the coset representatives. Physically, they are the non-translational elements
of the space group. All elements of G can be compactly written in this form. All four two-
dimensional nonsymmorphic space groups are down in the table below:

Group G Coset Representatives of G/T P

pg {1 | 0}, {σy | 1
2a1} σy

pmg {1 | 0}, {σy | 1
2a1}, {σx | 1

2a1}, {C2 | 0} C2v

pgg {1 | 0}, {σx | 1
2a1 + 1

2a2}, {σy | 1
2a1 + 1

2a2}, {C2 | 0} C2v

p4g
{1 | 0}, {σx | 1

2a1 + 1
2a2}, {σy | 1

2a1 + 1
2a2}, {σda | 1

2a1 + 1
2a2},

{σdb | 1
2a1 + 1

2a2}, {C4 | 0}, {C−1
4 | 0}, {C2 | 0}

C4v

The rotations/improper rotations of the operators of G, form a point group. We define this to
be the point group of the space group, and label it P . For symmorphic groups, the rotational
and reflectional elements, form P , whereas for nonsymmorphic groups, only the coset repre-
sentatives form P . This is an important distinction, as when we deal with the group of the
wavevector k, that group will be isomorphic, albeit not identical, to a subgroup of the nonsym-
morphic group.

2.5.3 Irreducible Brillouin Zone (IBZ)

The point group symmetry is reflected in the reciprocal space. Therefore, the First Brillouin
Zone (FBZ) exhibits symmetry of the point group of the space group, P . We define the Irre-
ducible Brillouin Zone (IBZ) as smallest part of the Brillouin zone that can be tessellated to form
the entire Brillouin zone. Apart from the point group symmetry of the crystal, many systems
also exhibit Time Reversal Symmetry (TRS), where in terms of reciprocal space, k is equivalent
to −k. This can ‘fold’ the IBZ into a smaller one. The High-Symmetry Points (HSP) on the IBZ
are conventionally labeled, as shown below in Fig. 3 for the square lattice:

Figure 3: The First Brillouin Zone (FBZ) can be retreived via tesslation of the Irreducible Brillouin Zone
(IBZ), whose High Symmetry Points (HSP) are labelled as the figure for the case of a square lattice.
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For pmg, pgg, because the point group of the space group is C2v, the IBZ is the square ΓXMY ,
while for p4g, the IBZ is the triangle ΓXM . For pg, even though P is {E, σy} and therefore IBZ
is Y Y ′LM , the IBZ folds again for systems with TRS and becomes the square ΓXMY .

The IBZ is used when we examine the wave properties of the medium. Dispersion relations,
which relate the frequency to the wavevector, are plotted along the edge of the IBZ where inter-
esting wave phenomena are more likely to occur; this is due to the higher-degree of symmetry
at these points, compared with those lieing within the IBZ.

2.6 Group of the wavevector k
Recall that from Bloch’s theorem, the argument of the exponential function is (ik · x). We
have already discussed how the translational component (associated to x) is reflected in the
representations of the nonsymmorphic group; in this subsection we now examine more closely
the group of k ∈ edge of IBZ. This group, Gk, is also known as the ‘little group’.

Consider an element of the space group, {α | a} ∈ G. It acts on a Bloch wave as

ˆ{α | a}ψk(x) = ψk({α | a}−1x) = ψk({α−1 | −α−1a}x)

= ψk(α−1x−α−1a) = eik·(α
−1x−α−1a)uk(α−1x−α−1a).

(2.15)

Since the dot product is invariant under unitary transformations, ik · (α−1x−α−1a) = i(αk) ·
(x− a), and since uk(x) follows the symmetry of the crystal,

ˆ{α | a}ψk(x) = eiαk·(x−a)uk(x). (2.16)

Now if k is at Brillouin zone boundaries (also known as high symmetry points), certain {α | a}
will result in αk = k+K. This means that {α | a}ψk(x) is the basis function of the same irrep
of T as ψk(x).

Define the group of k, also known as ‘little group of k’, Gk, as

Gk :=
{
{α | a} ∈ G | αk = k +K

}
. (2.17)

For a specific ω and k, by group theory, the dimension of the irrep of Gk is equal to the degen-
eracy of the solutions. Note that by this definition, it is always the case that {1 | t} ∈ Gk.

In a similar way to G, we can compactly write down elements of Gk through coset decomposi-
tion Gk/T .

Rotations/improper rotations of elements of Gk form a point group. We define this to be the
point group of k, Pk. We can see that it is isomorphic to the coset decomposition ofGk: Gk/T ∼=
Pk.

Most importantly, note that for symmorphic groups, the coset representatives of Gk/T are the
same operators as the operators of Pk itself. However, for nonsymmorphic groups, because
there are fractional translations that cannot be removed, the coset representatives of Gk/T are
not the same as the operators of Pk.

2.7 Irreducible representation of Gk
By utilising all the knowledge accrued in the previous subsections we are now in a position to
construct the irreps of a nonsymmorphic group.
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For symmorphic groups, since G = T o P , it is also true that Gk = T o Pk.

Let D(k)
T be the irrep k of T , and D

(γ)
Pk

be the irrep γ of Pk. Hence, for symmorphic groups,
irreps of Gk can be deconstructed as follows,

D
(γ)
Gk

({α | t}) = D
(k)
T ({1 | t})D(γ)

Pk
({α | 0}) = exp(ik · t)D(γ)

Pk
({α | 0}). (2.18)

For nonsymmorphic groups, the irreducible representations cannot be deconstructed in a sim-
ilar manner; hence other methods must be used to simplify the total irrep. One method is to
use Herring’s method.

We define the translational subgroup of k, Tk, as

Tk :=
{
{1 | tk} ∈ T | exp(ik · tk) = 1

}
. (2.19)

We note that the irrep of Tk is unity, i.e. 1, for all elements. Therefore, if the irrep of Gk/Tk is
known, then the irrep of Gk is the same as the irrep of Gk/Tk. Now Gk/Tk can be isomorphic
to a point group bigger than Gk/T , because the coset representatives of Gk/Tk will contain
translations not in Tk, {1 | tm} /∈ Tk (i.e. non-lattice translations).

However, this method can create spurious irreps, as any tk such that exp(ik · tk) = 1 will also
mean that exp(ink · tk) = 1 for any n ∈ Z. To remove the spurious irreps of Gk, we check
whether

χ
(α)
Gk

({1 | tm}) = dim
(
D

(α)
Gk/Tk

)
exp(ik · tm). (2.20)

Any irreps that do not hold the requirement above are spurious irreps [5].

For points away from the high symmetry points, Tk cannot be constructed; in these cases, ray
representations are used, which will not be covered here but are shown in Inui [7].

3 k · p Theory for the MLKL System
In this section we elucidate the k ·p perturbation method, a method that can be used to analyse
the dispersive behaviour in the vicinity of critical points in the Bloch spectrum, focusing on the
case of the MLKL system for concreteness. k · p theory will be used in conjunction with group
theoretical concepts, from Sec. 2, to simplify the local eigenvalue problem to reveal whether
there are degeneracies, their order if one exists, and how they can be broken to yield band-gaps.

For a mass-loaded Kirchhoff-Love system, the simplified PDE is(
∇4 − ω2

n,k[1 + V (x)]
)
ψn,k = 0, (3.1)

where V (x) = V (x− t) =
∑
t,pM

(p)δ(x− x(p) − t).

For a given k0, the periodic waves {un,k0}n form a complete basis set [8]. Therefore any solution
ψn,k can be written as

ψn,k = eik·xun,k = eik·x
∑
m

am,n(k)um,k0

= e−i(k−k0)·x
∑
m

am,n(k)ψm,k0 =: e−i∆k·x
∑
m

am,n(k)ψm,k0 .
(3.2)
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Now it can be shown that

∇4(e−i∆k·xψm,k0) = e−i∆k·x[∇4 + 6i∆k · ∇3 − 6∆k2∇2 +O(∆k3)]ψm,k0 , (3.3)

and since at k0

∇4ψm,k0 = ω2
k0 [1 + V (x)]ψm,k0 , (3.4)

we find that we require

an,m(k){[ω2
k0 − ω

2
k][1 + V (x)] + 6i∆k · ∇3 − 6∆k2∇2}ψm,k0 = 0 (3.5)

for any n,m.

In the neighbourhood of k0, ω2
k0
− ω2

k ≈ −2ωk0∆ω, where ∆ω := ωk − ωk0 . Taking the overlap
with some arbitrary ψl,k0 , we get the following:

(H
(1)
lm +H

(2)
lm )an,m(k) = Λlman,m(k) (3.6)

where
H

(1)
lm := 6i∆k · 〈l | ∇3 | m〉,

H
(2)
lm := −6∆k2〈l | ∇2 | m〉, and

Λlm := 2ωk0∆ω[δl,m + 〈l | V (x) | m〉].

If H(1)
lm = 0 and H

(2)
lm 6= 0, we get quadratic degeneracy. Whether these matrix elements are

going to be equal to zero can be predicted by selection rules of space group using group theory.

4 Results For Nonsymmorphic Platonic Crystal
Lin J. et al. computationally showed that when a photonic crystal adiabatically transitions from
a p4g symmetry to a pgg symmetry, a quadratic degeneracy at Γ becomes a linear one along ΓX
or ΓY [4]. In this section we demonstrate how these results are transposed to a structure elastic
plate.

We first show group theoretically that these effects should occur for the MLKL system, along
with other effects. Then, we compute the dispersion curves for all four nonsymmorphic space
groups to verify Lin J. et al’s assertions. Then, we demonstrate highly anisotropic oscillations
which arise following a symmetry breaking perturbation.

4.1 Theoretical results

4.1.1 Proof of two-fold degeneracy for any p4g system

Firstly, we prove, using group theoretical concepts from section 2, that there will be a two-fold
degeneracy at k = Γ for any system with p4g symmetry.

For G = p4g, there are 8 coset representatives of G/T . So,

G = T{1 | 0}+ T{C4 | 0}
+ T{C−1

4 | 0}+ T{C2 | 0}

+ T{σx |
1

2
a1 +

1

2
a2}+ T{σy |

1

2
a1 +

1

2
a2}

+ T{σda |
1

2
a1 +

1

2
a2}+ T{σdb |

1

2
a1 +

1

2
a2}.

(4.1)
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Now, at k = Γ, GΓ has the same coset representatives as G, that is GΓ/T = G/T . Also, TΓ = T ,
since exp(i0 · t) = 1 ∀ {1 | t} ∈ T .

Now, the factor group is isomorphic to GΓ/TΓ
∼= C4v, with the cosets of GΓ/TΓ equivalent to

the elements of C4v of the same names. That is,

{α | v} ⇔ α ∀ {α | v} ∈ GΓ/TΓ, ∀ α ∈ C4v. (4.2)

The C4v character table is as below:

C4v (GΓ)
classes⇒
irreps ⇓

E 2 C4 C2 2σv 2σd Linear Quadratic Cubic

A1 +1 +1 +1 +1 +1 z x2 + y2, z2 z3, z(x2 + y2)

A2 +1 +1 +1 -1 -1 Rz - -
B1 +1 -1 +1 +1 -1 - x2 − y2 z(x2 − y2)

B2 +1 -1 +1 -1 +1 - xy xyz

E +2 0 -2 0 0
(x, y),

(Rx, Ry)
(xz, yz)

(xz2, yz2),
(xy2, x2y), (x3, y3)

We see that the E irrep of C4v is two-dimensional. This guarantees a two-fold degeneracy at
k = Γ for any system with p4g symmetry.

4.1.2 Proof of quadratic degeneracy for an MLKL p4g system

Secondly, using the perturbation theory of Sec. 3, we can demonstrate that this degeneracy is
quadratic.

Consider the matrix element H(1)
lm := 6i∆k · 〈l | ∇3 | m〉, between the basis function of the irrep

E of GΓ. To see whether it vanishes for any l,m, we inspect the operator∇3:

∇3 =

(
∂3

∂x3
+

∂

∂x

∂2

∂y2

)
î+

(
∂3

∂y3
+

∂

∂y

∂2

∂x2

)
ĵ (4.3)

Inside the inner product, which integrates over a unit cell, the translation operators do not
change the result of the integral. Noting this, the form of Eq. (4.3), and the character table of
C4v, we can see that ∇3 transforms as the two-dimensional irrep E of GΓ, named E after the
irrep of C4v, and is an irreducible tensor operator.

Now, in order for an inner product

〈l(γ) | T̂ (α) | m(β)〉, (4.4)

where T̂ (α) is a irreducible tensor operator, | m(β)〉, | m(γ)〉 are basis functions for irrepsD(γ), D(β)

respectively, to not vanish, we require that D(α×β) contain D(γ) [7]. Inspecting the first order
term in the effective Hamiltonian,

H
(1)
lm = 6i∆k · 〈l | ∇3 | m〉, (4.5)

Now, all three | m〉, | l〉,∇3 transform as the irrep E. However, D(E×E) = A1 + A2 + B1 + B2,
which doesn’t contain E. Therefore, the matrix element vanishes, and we have no linear term
in the dispersion relation.
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Now consider the quadratic term, H(2)
lm := −6∆k2〈l | ∇2 | m〉. The∇2 operator is

∇2 =
∂2

∂x2
+

∂2

∂y2
. (4.6)

Looking at the C4v character table, we note that this operator is also an irreducible tensor op-
erator and transform as the irrep A1. Now D(A1×E) = E, which contains the irrep E; therefore
the quadratic term does not vanish. The two results leads to a quadratic degeneracy between
the two E basis functions at k = Γ.

4.1.3 Proof of band-sticking along M −X of p4g

In this section we demonstrate a nonsymmorphic specific phenomena, known as band-sticking;
this is when bands are degenerate along entire edges of the IBZ.

We prove that this occurs along M − X for any system with G = p4g symmetry and TRS. To
prove this, we prove that only two-dimensional irreps exist at M,X, and the line MX . We
show the construction of irrep of GX below.

GX/T has four coset representatives
E = {1 | 0}, (4.7)

C2 = {C2 | 0}, (4.8)

σx = {σx |
1

2
t1 +

1

2
t2}, (4.9)

σy = {σt |
1

2
t1 +

1

2
t2}. (4.10)

The t’s that make exp(ik · t) = 1 form TX = {{1 | 2t1 + t2}}, so the translation representative
not in TX is {1 | a1}. Now GX/TX has double the elements as GX/T :

E′ = {1 | 0}, (4.11)

C ′2 = {C2 | 0}, (4.12)

σ′x = {σx |
1

2
t1 +

1

2
t2}, (4.13)

σ′y = {σt |
1

2
t1 +

1

2
t2}, (4.14)

Ē′ = {1 | t1}, (4.15)

C̄2
′
= {C2 | t1}, (4.16)

σ̄x
′ = {σx |

3

2
t1 +

1

2
t2}, (4.17)

σ̄y
′ = {σt |

3

2
t1 +

1

2
t2}, (4.18)

a total of 8 elements. From the multiplication table, we can see that this factor group is isomor-
phic toC4v, with Ē′ ⇔ C2. Applying the fact that we require χ(α)

Gk
({1 | tm}) = dim(D

(α)
Gk/Tk

) exp(ik·

tm) = −dim(D
(α)
Gk/Tk

), we find that only the E representation of C4v can be a representation of
GX . This means that GX can only have two-dimensional irreps. Similarly, it can be shown
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that k = M point will have a Gk/Tk isomorphic to D4h, with only Eg, Eu, 2-dimensional irreps
allowed.

Lastly, the coset representatives for GMX are

E = {1 | 0}, σx = {σx |
1

2
a1 +

1

2
a2}. (4.19)

Consulting Terzibaschian T. [6], we see that irreps are

GMX

classes⇒
irreps ⇓

{1 | 0} {σx | 1
2a1 + 1

2a2}

D
(1)
MX 1 i

D
(2)
MX 1 −i

Now D
(2)
MX = D

(1)∗
MX ; in the presence of time-reversal symmetry, this means that the two irreps

are degenerate. This proves that there will be a two-fold degeneracy along X − M , in the
presence of TRS. Using the same method, it can be shown that pgg will also have band-sticking
along M −X .

4.2 Numerical results
Below we present the computations that verify the theoretical results in the previous section.

4.2.1 Dispersion curves of the four 2D Nonsymmorphic MLKL systems

The mass pin setup analogous to [4] for the four 2D nonsymmorphic space groups were con-
structed, and the dispersion curves calculated using Matlab. They are shown below in Figs. 4 -
7.

Figure 4: Dispersion curve for a pg lattice of [4] Figure 5: Dispersion curve for a pmg lattice of [4]
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Figure 6: Dispersion curve for a pgg lattice of [4] Figure 7: Dispersion curve for a p4g lattice of [4]

The p4g’s symmetry is broken into pgg by rotating the pairs of masses off of the π/4. One
property that is common with all four dispersion curves is that there is band sticking along
X −M . This can be attributed to the fact that there are only two-dimensional irreps along this
line, as it was proven for p4g. This is due to the spurious irreps from fractional translations,
and is unique to nonsymmorphic groups.

In the earlier section, we proved that there would be a doubly quadratic degeneracy at Γ for
p4g which may turn into a band crossing when transformed into pgg. Indeed, this is seen in the
dispersion curves shown in Figs. 4-7.

4.3 Dispersion contours and lattice simulation for p4g and pgg
In this subsection we adiabatically transform a pgg structure to a p4g structure. The disper-
sionless linear degeneracy of the pgg structure occurs at the same frequency as the dispersive
quadratic degeneracy of the p4g structure. Hence it makes sense to contrast the scattering be-
haviour between the two structures for a frequency in the vicinity of the degeneracies.

To demonstrate that the properties are symmetry induced, an alternate mass setup with the
same symmetries were constructed for pgg and p4g. They are shown in Fig. 8, 9.
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Figure 8: Dispersion Curve for an alternate lattice
of pgg symmetry.

Figure 9: Dispersion Curve for an alternate lattice
of p4g symmetry.

For this setup, the symmetry is broken by a shearing transformation of the four masses of
C4v symmetry. We see that again, there is a quadratic degeneracy that turns into a linear one
between the 7 th and 8th band as p4g → pgg.

To further study the dispersion relation, we plot the dispersion contours in the neighbourhood
of the degeneracies, as shown in Figs. 10 - 13. We see that for pgg, we get an elliptical contour
in the neighbourhood of the Dirac point, which indicates the linear behaviour, while for p4g we
get an anistropic dispersion of C4v symmetry.
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Figure 10: Dispersion contour at the neighbour-
hood of the Dirac point for the 7th band of pgg.

Figure 11: Dispersion contour at the neighbour-
hood of the Dirac point for the 8th band of pgg.
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Figure 12: Dispersion contour at the neighbour-
hood of the quadratic degeneracy for the 7th band
of p4g.

Figure 13: Dispersion contour at the neighbour-
hood of the quadratic degeneracy for the 8th band
of p4g.

Group velocity, which is the speed in which the envelope of the wave travels at, is given by

vg =
∂ω

∂k
= ∇kω(k). (4.20)

Note that because in the neighbourhood of a linear degeneracy, the gradient is constant with ω,
we expect a dispersionless propagation, while in the neighbourhood of a quadratic degeneracy,
we expect waves to disperse.

The Matlab code Foldy was used to find the scattering solution for structured plates due to a
point source placed in the central position of a p4g and pgg structure. The results are shown in
Fig. 14, 15. The highly directed oscillation in the vicinity of the p4g band-gap is shown in the
right-hand figure.
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Figure 14: Dispersion-light propagation of waves
from a point source at frequency near the band gap
for a platonic crystal of pgg symmetry.

Figure 15: Highly directed propagation of waves
from a point source at frequency near the band gap
for a platonic crystal of p4g symmetry.

Using the knowledge of Eq. (4.20), because p4g has a point group symmetry of C4v, we expect
propagation to be a dispersive with a C4v symmetry in the neighbourhood of ω of the degen-
eracy. For pgg symmetry, we expect a dispersionless propagation in the neighbourhood of ω
of the degeneracy. We can see that as predicted, waves propagating in a p4g medium displays
an X shape that has C4v symmetry, which indicates dispersive propagation with C4v symmetry.
On the other hand, waves in pgg medium displays a circular dispersion, due to the fact that the
neighbourhood of the Dirac point is dispersionless. The slight residual anistropy is due to the
other modes of the same ω being excited.

These directed oscillations are reminiscent of caustics, which can occur when light rays reflect
or refract off a curved surface.

5 Designing Topological Waveguides and Energy-Splitters
5.1 Accidental Degeneracies
Up until now we have solely dealt with symmetry induced degeneracies. However other de-
generacies, not entirely symmetry induced, can occur; these are more commonly known as
accidental degeneracies.

Varying the material parameters of a system can often bring two bands together. However,
upon getting closer, sometimes the bands ‘repel’ from each other while other times they cross
each other. This can be explained using representation theory.

Consider a two-band system at a given k and material parameter m0, with eigenfunctions
|A〉, |B〉 that adhere to the symmetry constraints, such that

Ĥ0|i〉 = ωi|i〉, (5.1)
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for i = A,B. Then, let us assume that changing the material parameters by δm alter the Hamil-
tonian by δĤ . Then, we can calculate the shift in energies by diagonalizing the following
Hamiltonian matrix

H =

[
ωA + δHAA δHAB

δH∗AB ωB + δHBB

]
, (5.2)

where
δHij = 〈i(α) | δĤ | j(β)〉. (5.3)

Then, the solution to the eigenvalue problem is

ω± =
1

2
(ωA + ωB + δHAA + δHBB)±

√
([ωA − ωB] + [δHAA − δHBB])2 + 4|δHAB|2. (5.4)

We can see that we can bring the bands together by [δHAA − δHBB] → −[ωA − ωB]. However,
we can also see that the eigenvalues cannot become degenerate unless HAB = 0.

Now even though the actual basis functions are complicated and change with the specific k
values, their symmetries are determined by the irrep andGk. Since Ĥ will transform as the fully
symmetric group, this means that in order for HAB to vanish, |i〉 and |j〉 must be of different
irreps α, β such that D(α×β) does not contain the fully symmetric group.

So, if two bands are of different irreps, they can be accidentally degenerate, and therefore a
Dirac point can occur. The symmetry that allows the two bands to be of different irrep is
said to ‘protect’ the Dirac point. This theory can also explain ‘gapping’ of Dirac points. If the
symmetry is reduced such that the two bands previously of different irreps are of the same
irrep, then as shown, the two bands will repel each other, leading to a band gap (provided
there are no other bands near by).

5.2 Compatibility relations
Consider a point k1 in the dispersion curve and a neighbouring k2 point. Compatibility rela-
tions can tell us which bands of k1 are connected to bands of k2. Also consider a small defor-
mation in the crystal which brings the space group from G to a subgroup H . Compatibility
relations can also tell us which irreps transform into another irrep.

In general, an irrep of a group G is ‘compatible’ with a direct sum of irreps of a smaller sub-
group H if the elements of the irrep of G can be written as a direct sum of irreps of H [8]. This
can be useful in determining the behavior of the basis functions and the dispersion curves, as
shown in the example below.

5.3 Example: accidental degeneracies for a nonsymmorphic crystal:
along Γ−X or Γ− Y from p4g → pgg

Although we cannot prove group theoretically that a Dirac point will occur along Γ−X or Γ−Y
near where the quadratic degeneracy at Γ of p4g, we can show that

• The two-fold degeneracy will be lifted as p4g → pgg

• The bands will be allowed to cross along Γ−X or Γ− Y ,
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using compatibility relations and level-crossing theory.

The compatibility relations of the E irrep of p4gΓ/TΓ to the neighbouring k’s, ΓX and ΓY and
to pgg’s groups are illustrated in the table below.

G⇒ p4g pgg

k ⇓ Gk ∼= DGk
Gk ∼= DGk

Γ C4v E C2v B1 +B2

ΓX C2 A+B C2 A+B

ΓY C2 A+B C2 A+B

From the compatibility relations, we can see that the E irrep of p4gΓ is compatible with a direct
sum of irreps of different parity of pgg for all relevant k’s, which means that firstly, the two-fold
degeneracy is lifted, and secondly, by level-crossing theory of Sec. ??, the two new bands are
allowed to cross. This was already shown in Figs. 6, 7; the quadratic degeneracy adiabatically
changes into a linear one.

5.4 Example: off-HSP Dirac points
Using the theory of accidental degeneracies, we show how to create a Dirac point at an off-HSP,
induced by accidental degeneracies. An argument similar to this one was used C.T. Chan, et al.
to explain the presence of a Dirac point for a photonic crystal system [3].

Consider a photonic crystal which has rods of electric permittivity ε. It turns out for a photonic
system, that increasing the permittivity of rods has the effect of bringing bands together.

Now consider a square lattice of p4m symmetry. This is a symmorphic group, so G = p4m =
C4voT . Now the point group of k (which the group of k trivially follows since G is a symmor-
phic group) near k = X is as follows:

PX = C2v; PΓX = {1, σy}; PXM = {1, σx},

where the character tables are shown below:

PX = C2v

classes⇒
irreps ⇓

E C2 σy σx

A1 +1 +1 +1 +1

A2 +1 +1 −1 −1

B1 +1 −1 +1 −1

B2 +1 −1 −1 +1

PΓX or PXM
classes⇒
irreps ⇓

E σy or σx

A 1 1

B 1 −1

Turns out, at k = X , the bands (A1, B1)(X) are on top of each other and can be brought to-
gether by tweaking ε. Compatibility relations show us that (A1, B1)(X) ↔ (A,A)(ΓX) and
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(A1, B1)(X) ↔ (A,B)(XM). From this result and level crossing theory, we know that the
(A1, B1) bands will cross along XM , as they are of different irreps along XM , while they will
repel along ΓX , since they are of the same irrep (A) along ΓX . This ‘guarantees’ a Dirac point
along XM as the two bands are brought together. Now, if the mirror symmetry is broken, then
the two bands will now be of the same irrep (the identity irrep); this will open up the Dirac
point.

5.5 Topological waveguides and energy-splitters
It was demonstrated by C.T. Chan et al. that the Dirac points that arise from accidental de-
generacies have non-trivial topological indices. Therefore, when gapped by reducing the sym-
metries, by the bulk-edge correspondnce, yield topologically protected edge states, which are
propagating states between edges of two lattices [3]. These edge states are more robust, less
prone to backscattering, than topologically trivial states. In the aformentioned paper the gap-
ping was induced by a breaking of TRS; in this section, we demonstrate via simulations, that
a reduction in the reflectional symmetries mx and my, by a slight rotation of the components
of the unit cell, can also yield these edge states. This passive mechanism is beneficial as no
external TRS breaking field is required. Examples of a straight interfacial waveguide, a bend
and a topological energy-splitter are shown below. A source was placed at the leftmost edge
for all three examples.

Figure 16: Mass setup for topological waveguide.
Two lattices reflections of one another are sand-
wiched.

Figure 17: The aforementioned lattice allows for
a propagating edge state which is directional and
does not bleed into surroundings.
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Figure 18: By altering the layout of the different
lattice types, propagation of edgemodes can be split.

Figure 19: Propagation of edgemodes can also be
bent around corners.

6 Conclusion
Using group and k·p theory, we have shown a first-principles approach to analysing wave phe-
nomena in nonsymmorphic structured elastic plates. Degeneracies and their associated exotic
phenomena, such as dynamic anisotropy, are predicted via purely analytic means. Both sym-
metric induced degeneracies, for nonsymmorphic crystals and accidental degeneracies were
theoretically examined; for the latter we showed how they result in passive topologically pro-
tected edge states. The energy was shown to propagate cleanly around a sharp bend aswell
as split at junction which lay between topologically distinct media. To the authors knowledge
this is the first demonstration of topological energy-splitting in more than two directions. The
uses of this splitter are far-reaching; the underlying mechanism is ideal for applications such
as beam-splitters and switches.
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