Measurement-induced phase transitions in quantum inference problems

With Curt von Keyserlingk (KCL), Austen Lamacraft (Cambridge)

arXiv:2504.08888

Sun Woo P. Kim (KCL) 25-09-12, Christ's College, Cambridge

Outline

- 1. Bayesian inference and hidden Markov models
- 2. Teacher-student scenario and Bayes optimality
- 3. General quantum inference problem and quantum hidden Markov models
- 4. Quantum error correction and the random-bond Ising model
- 5. The Planted SSEP and the planted XOR
- 6. Discussion of the phase diagrams

Bayesian inference

Infer posterior distribution for state X given data Y

$$p(X \mid Y) = \frac{p(Y \mid X)p(X)}{p(Y)}$$

p(Y|X): "likelihood"/measurement model

p(X): "prior"

$$p(Y) = \sum_{X} p(Y|X)p(X)$$
: "evidence"/normalisation

In general X is high-dimensional

Hidden Markov models (HMMs)

$$X := \mathbf{x}_{1:t}$$
: entire trajectory $\Longrightarrow p(X) = p(\mathbf{x}_t | \mathbf{x}_{t-1}) \cdots p(\mathbf{x}_2 | \mathbf{x}_1) p(\mathbf{x}_1)$ $Y := \mathbf{y}_{1:t}$: measurements over all timesteps $\Longrightarrow p(Y|X) = \prod_{\tau} p(\mathbf{y}_{\tau} | \mathbf{x}_{\tau})$

Filtering: posterior for current state given history of measurements $p(\mathbf{x}_t | \mathbf{y}_{1:t})$

Outline

- 1. Bayesian inference and hidden Markov models
- 2. Teacher-student scenario and Bayes optimality
- 3. General quantum inference problem and quantum hidden Markov models
- 4. Quantum error correction and the random-bond Ising model
- 5. The Planted SSEP and the planted XOR
- 6. Discussion of the phase diagrams

Teacher-student scenario (Zdeborová & Krzakala, 2016)

- Teacher generates true state $X^* \sim p_*(X^*)$ then data $Y \sim p_*(Y|X^*)$ with teacher's parameters θ_*
- Student receives only Y and conducts Bayesian inference assuming student parameters θ to generate posterior for inferred state X, $p_{\rm s}(X \mid Y)$
- Joint distribution is known as the planted ensemble

$$p(X, Y, X^*) = p_{s}(X|Y)p_{*}(Y|X^*)p_{*}(X^*) = \frac{p_{s}(Y|X)p_{s}(X)p_{*}(Y|X^*)p_{*}(X^*)}{p_{s}(Y)}$$

- At Bayes optimality (Nishimori condition): $\mathbf{s} = {}^*$, X distributed identically to X^*
- Note: Even with full knowledge of teacher's parameters, perfect inference is not possible in general as data is still generated randomly

Planting

• Student's posterior can be thought of as a Gibbs probability:

$$p_{s}(X|Y) = \frac{p_{s}(Y|X)p_{s}(X)}{p_{s}(Y)} \leftrightarrow \frac{e^{-\beta H(X|Y)}}{Z_{s}(Y)}$$

• Then observations Y can be thought of as a "disorder field":

$$p_*(Y) = \sum_{X^*} p_*(Y|X^*) p_*(X^*)$$

• However, $Y = (y_{x,t})_{x \in 1:L,t \in 1:T}$ are correlated

cf. traditional disordered systems where Y is iid

The true configuration is "planted" in the disorder

Bayes optimality (* = s)

Why is it called Bayes optimal?

For $X \in \mathcal{X}$, consider classifier $h(Y) \in \mathcal{X}$

Classification performance $\mathbb{E}_{Y,X^*}\left[\delta_{h(Y),X^*}\right]$

Theorem: Optimal classifier $h_{\text{optimal}}(Y) = \underset{X}{\operatorname{argmax}} p_*(X \mid Y)$

Consider Estimator $\tilde{O}(Y) \in \mathbb{R}$ for real-valued observables $O(X) \in \mathbb{R}$ Average mean-squared error of estimator $\mathbb{E}_{Y,X^*}\left[(\tilde{O}(Y) - O(X^*))^2\right]$

Theorem: Optimal estimator $\tilde{O}(Y) = \mathbb{E}_{X \sim p_*(X|Y)} \left[O(X) \right]$

Observables

- Mean-squared error of the mean $\text{MSEM} = \mathbb{E}_{Y,X^*} \left[\left(\langle O(X) \rangle_{\text{S}} O(X^*) \right)^2 \right]$
- Mean-squared error $\mathrm{MSE} = \mathbb{E}_{X,Y,X^*} \left[\left(O(X) O(X^*) \right)^2 \right]$
- Observable variance $\delta O_{\rm S}^2 = \mathbb{E}_{Y,X^*} \left[\langle O(X)^2 \rangle_{\rm S} \langle O(X) \rangle_{\rm S}^2 \right]$
- $\bullet \ \langle \cdot \rangle_{\mathrm{S}} = \mathbb{E}_{X \sim p_{\mathrm{S}}(X|Y)}[\ \cdot \]$

At Bayes optimality,
$$MSEM = \frac{1}{2}MSE = \delta O_s^2!$$

Outline

- 1. Bayesian inference and hidden Markov models
- 2. Teacher-student scenario and Bayes optimality
- 3. General quantum inference problem and quantum hidden Markov models
- 4. Quantum error correction and the random-bond Ising model
- 5. The Planted SSEP and the planted XOR
- 6. Discussion of the phase diagrams

General quantum inference problem

- Teacher prepares state $\rho_{*,0}$
- Applies channel \mathscr{C}_* which records outcomes in a classical register

$$\mathscr{C}_*: \rho_{*,0} \to \sum_{O^*,Y} \rho_*(Y,O^*) \otimes |Y\rangle\langle Y| \otimes |O^*\rangle\langle O^*|$$

- Y, O^* could be measurement outcomes, or record of randomly chosen subchannel
- Y is revealed to the student. O^* is hidden from the student.
- Goal of student: infer O^* !

General quantum inference problem

- What's the best that the student can do, assuming model \mathscr{C}_s ?
- → Simulate a density matrix, and
 condition it on measurement outcomes

$$p_{s}(O \mid Y) = \frac{\operatorname{tr}[\mathbb{P}_{O}\mathcal{T}_{Y}\mathscr{C}_{s}\rho_{s,0}]}{\operatorname{tr}[\mathcal{T}_{Y}\mathscr{C}_{s}(\rho_{s,0})]}$$

• $\mathcal{T}_Y = \operatorname{tr}_{\mathscr{Y}} \mathcal{P}_Y$ (project then trace out)

General quantum inference problem

• Think of student's simulated density matrix as an actual density matrix:

$$\rho = \sum_{Y} \frac{\rho_{s}(Y)}{\operatorname{tr}[\rho_{s}(Y)]} \otimes |Y\rangle\langle Y| \otimes \rho_{*}(Y)$$

- Equivalent of the planted ensemble in the classical setting
- Is symmetric under $* \leftrightarrow s$ at Bayes optimality
- Can study observable sharpening of the teacher's system:

$$\delta O_*^2 = \sum_{Y} \left(\frac{\operatorname{tr}[O_*^2 \mathcal{P}_Y \rho]}{\operatorname{tr}[\mathcal{P}_Y \rho]} - \frac{\operatorname{tr}[O_* \mathcal{P}_Y \rho]^2}{\operatorname{tr}[\mathcal{P}_Y \rho]^2} \right)$$

• At Bayes optimality $\delta O_*^2 = \delta O_{\rm S}^2 = {
m MSEM!}$ 'Sharpening' = 'learnability'

Quantum hidden Markov models (qHMMs)

- Break down whole channel into subchannels
- Some channels record outcomes:

$$\mathcal{R}_*: \rho_* \to \sum_{a} K_{*,a} \rho_* K_{*,a}^{\dagger} \otimes |a\rangle\langle a|$$

• $Y = (y_t)_{t \in 1:T}$ are revealed, while O^* are hidden

Quantum hidden Markov models (qHMMs)

- Assume that channel applied at each step does not depend on any of the previously revealed hidden registers
- Then, can condition channel at each timestep separately:

$$\mathcal{T}_{\mathbf{y}_t} \mathcal{R}_{\mathbf{S}} = \mathcal{K}_{\mathbf{S}, \mathbf{y}_t} : \rho_{\mathbf{S}} \to K_{\mathbf{S}, \mathbf{y}_t} \rho_{\mathbf{S}} K_{\mathbf{S}, \mathbf{y}_t}^{\dagger}$$

Connection with HMMs

• For HMMs, the (*unnormalised*) posterior distribution for the **filtering** task evolves according to "the forward algorithm"

$$q_{s}(\mathbf{x}_{t}|\mathbf{y}_{1:t}) = \sum_{\mathbf{x}_{t-1}} p_{s}(\mathbf{y}_{t}|\mathbf{x}_{t}) p_{s}(\mathbf{x}_{t}|\mathbf{x}_{t-1}) q_{s}(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1})$$

• Using vector notation for posterior ex. $q_{s}(\mathbf{x}_{t}|\mathbf{y}_{1:t}) = (\mathbf{x}_{t}|q_{s}(\mathbf{y}_{1:t}))$,

$$|q_{s}(y_{1:t})| = K_{s,y_{1:t}}E_{s,t}|q_{s}(y_{1:t-1})$$

- K_{s,y_t} : diagonal matrix; measurement model $(x_t | K_{s,y_t} | x_t) = p_s(y_t | x_t)$
- $\mathsf{E}_{\mathrm{s},t}$: prior Markov kernel $(x_t | \mathsf{E}_{\mathrm{s},t} | x_{t-1}) = p_{\mathrm{s}}(x_t | x_{t-1})$

Connection with HMMs

 for qHMMs, the student's density matrix evolves as:

$$\rho_{s}(\mathbf{y}_{1:t}) = \mathcal{K}_{s,\mathbf{y}_{t}} \mathcal{E}_{s,t} \rho_{s}(\mathbf{y}_{1:t-1})$$

- Group all channels between revealed registers as \mathcal{E}_t
- $\mathcal{K}_{\mathbf{s}, \mathbf{y}_t}$ is the Kraus operator from conditioning on current measurement outcome \mathbf{y}_t

If (reduced) density matrix is diagonal, then retrieve HMMs ⇒ subset of qHMMs

Haar-random unitaries

Haar-random unitary gate u can be thought of as a channel

$$\rho \to \int d\mu(u) \ u\rho u^{\dagger} \otimes |u\rangle\langle u|$$

Can have block diagonal structure

ex.
$$u_{\mathrm{U}(1)} = u^{(-1)} \oplus u^{(0)} \oplus u^{(1)} = \begin{pmatrix} u^{(-1)} & & & \\ & u^{(0)} & & \\ & & u^{(1)} \end{pmatrix}$$

Haar-random unitaries

• If the choice of unitary gate is **not** revealed to the student, then can trace over classical registers, which is completely depolarising for each block

$$\rho \to \int d\mu(u) \ u\rho u^{\dagger} = (\mathcal{D} \oplus \cdots \oplus \mathcal{D})[\rho]$$

• ex. for $u_{\rm U(1)}$, we get $\mathscr{E}_{\rm ssep}$ which acts on diagonal elements of the density matrix as a "simple-symmetric exclusion process",

Haar-random unitaries

- For a setup with hidden (block-diagonal) Haar-random unitaries and measurements on observables diagonal in this basis, the student can do optimal inference using a classical HMM
- Consider local Hilbert space of qubits and qudits $\mathcal{H}_{loc} = \mathbb{C}^2 \otimes \mathbb{C}^d$. We prove that even with **revealed** unitary gates, in the $d \gg e^{LT}$ limit, the student can still do optimal inference with a classical HMM

- Haar unitary
 ← Markov kernel
- Quantum measurement ↔ classical likelihood/measurement model

Outline

- 1. Bayesian inference and hidden Markov models
- 2. Teacher-student scenario and Bayes optimality
- 3. General quantum inference problem and quantum hidden Markov models
- 4. Quantum error correction and the random-bond Ising model
- 5. The Planted SSEP and the planted XOR
- 6. Discussion of the phase diagrams

- Teacher applies error channel & applies bit-flips with some rate $\pi_* = e^{-\beta_*}/2\cosh\beta_*$
- Record current bit-flip status in 'environment' register $|f_*\rangle\langle f_*|$, $f_l=\pm 1$

$$\rho_* \to \pi_*(X \otimes X_{\text{env}}) \rho_*(X \otimes X_{\text{env}}) + (1 - \pi_*) \rho_*$$

• Measure syndrome s^* and record measurement outcome

$$\rho_* \to \sum_{s^*} \mathbb{P}_{s^*} \rho_* \mathbb{P}_{s^*} \otimes |s^*\rangle \langle s^*|$$

- Possibly bit-flip errors on the syndrome measurement $s^* \to s$
- Goal of the student: Infer f_* from $S = (s_{l,t})_{l \in 1:L}^{t \in 1:T}$
- Student assumes $\pi = e^{-\beta}/2 \cosh \beta$

- Natural order parameter is $\mathbb{E}[(f_l f_{l,t}^*)^2]$
- Writing the student's guess as $f_l = \sigma_v \sigma_{v'} f_l^*$, above becomes a ferromagnetic order parameter $\mathbb{E}[\langle \sigma_v \sigma_{v'} \rangle]$ of an RBIM
- $\beta \leftrightarrow 1/T$, $p = e^{-\beta_*}/2 \cosh \beta_*$
- Sometimes known as the 'planted Ising model'

- Plot in $\beta \beta_*$ space \rightarrow Nishimori condition is diagonal line
- $\beta_* \to \infty$: clean Ising model
- $\beta \rightarrow \infty$: Minimum weight perfect matching (MWPM)
- Not pictured: student's uncertainty in their guess: $\delta f_l^2 = 1 \mathbb{E}[\langle \sigma_v \sigma_{v'} \rangle^2]$. Confident in their **wrong** answer \rightarrow Spin-glass phase

Outline

- 1. Bayesian inference and hidden Markov models
- 2. Teacher-student scenario and Bayes optimality
- 3. General quantum inference problem and quantum hidden Markov models
- 4. Quantum error correction and the random-bond Ising model
- 5. The Planted SSEP and the planted XOR
- 6. Discussion of the phase diagrams

(Quantum) Planted SSEP (Agrawal et al., 2022)

- Local Hilbert space of qubits and qudits $\mathbb{C}^2 \otimes \mathbb{C}^d$
- Teacher evolves with Haar-random U(1)-symmetric unitary gates in brickwork fashion
- Teacher performs on-site weak measurements at every timestep

$$Q(y) = \frac{1}{\sqrt[4]{2\pi}} \exp\left(-\frac{(y - \epsilon_* Z)^2}{4}\right)$$

- Teacher measure total charge C_st at the end
- As a standalone circuit: charge-sharpening δC_*^2
- Goal of the student: infer C from $Y = (y_{x,t})_{x \in 1:L}^{t \in 1:T} \Rightarrow \text{MSE}(C)$

Planted SSEP

• In the limit $d \gg \mathrm{e}^{LT}$, student can conduct optimal inference with assuming a classical HMM of inferring a SSEP from noisy images:

$$p(s_t, s_t' | s_{t-1}, s_{t-1}) = (s_t, s_t') \begin{pmatrix} 1 & & & \\ & 1/2 & 1/2 & \\ & 1/2 & 1/2 & \\ & & 1 \end{pmatrix} | s_{t-1}, s_{t-1}')$$

$$p_*(y_{x,t} | s_{x,t}^*) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y_{x,t} - \epsilon_* s_{x,t}^*)^2}{2}\right)$$

• Generalisation of inferring a random walk (SWPK, Lamacraft, 2022)

Planted SSEP

Phase diagram of the planted SSEP

- Go beyond existing work by expanding the phase diagram into the $\epsilon-\epsilon_*$ parameter space
- Follow (Barratt et al. 2022) to develop replica field theory, which predicts the same universality class of phase boundary
- Sharpening and learnability phases coincide for this model

Phase diagram of the planted SSEP

 Both replica field theory and perturbative expansion predict that the disconnected correlator should change sign across the Bayes optimal line in the fuzzy phase

$$\mathbb{E}[\langle s_{x}s_{0}\rangle] \sim \left(\frac{\epsilon^{2}_{*}}{\epsilon^{2}} - 1\right)$$

Planted X0R

- Teacher randomly picks Booleans $b_{1:2^N\!,1}$ then performs XOR operations
- Produces "images" of the Booleans $y \sim \mathcal{N}(\epsilon_* b, \sigma_*^2)$
- Goal of the student: deduce the final bit

(Quantum) Planted XOR

- Note that applying a SSEP gate + measuring one of the outputs is like picking XOR or NOTXOR and telling the student which one you picked
- Produce a quantum model by replacing the XOR gates with $u_{\rm U(1)}$ with one projective measurement, and Gaussian measurements with corresponding weak measurement
- Teacher picks from an ensemble of computational basis states
- Qudit dimension d=1 is "maximally quantum"
- Dilute projective measurement version studied in (Feng et al. 2024)

Solving the planted XOR

- ρ_t only depends on $\rho_{t-1}^{\rm left}$ and $\rho_{t-1}^{\rm right}$ which are independent of each other
- Exploit travelling wave approach originally used to study the directed polymer (Derrida, Spohn, 1988) and that near the transition, can linearise the evolution of the posterior/density matrix (Feng, Nahum, Skinner 2022)

Phase diagram of quantum and classical planted XOR models

- Again, fuzzy/sharp phases coincide with inference possible/impossible phases
- Classical model has a larger fuzzy phase

 → recall that this is same as the teacher hiding
 the sampled unitary gates, therefore less
 information
- Reentrance in the phase diagram, cf. 2D RBIM

Outline

- 1. Bayesian inference and hidden Markov models
- 2. Teacher-student scenario and Bayes optimality
- 3. General quantum inference problem and quantum hidden Markov models
- 4. Quantum error correction and the random-bond Ising model
- 5. The Planted SSEP and the planted XOR
- 6. Discussion of the phase diagrams

Phase diagrams

- All models we studied had same phase boundary for fuzzy / sharp and inference impossible / possible
- This does not have to be so! $\delta C_{\rm S}^2 = {\rm MSEM} = {\rm MSE/2} \ {\rm only} \ {\rm on\ the\ Bayes}$ optimal line
- MSE is like the FM order parameter
- $\delta C_{
 m S}^2$ is like the Edwards-Anderson order parameter
- Small $MSE \Rightarrow small \ \delta C_s^2 \leftrightarrow Ferromagnetic phase$
- Large MSE but small $\delta C_{\rm S}^2 \leftrightarrow$ Spin Glass phase
- Large MSE and large $\delta C^2 s \leftrightarrow Paramagnetic phase$

Phase diagrams

- Theorem: Phase diagram for MSEM cannot curve down, due to the Bayes optimal estimator theorem
- For a fixed ϵ_* , the best the student can do is to set $\epsilon=\epsilon_*$
- Therefore can only escape the inference possible phase to inference impossible phase, but never better

Quantum state preparation perspective

Outlook

- Can we use quantum fluctuations to get different universality class to the classical HMM models? (ex. quantum planted directed polymer)
- General field-theoretic RG analysis off of the Bayes-optimal line (cf. Nahum, Jacobson 2025; Gopalakrishnan, McCulloch, Vasseur 2025)
- Non-Markovian inference problems (ex. errors with memory in QEC)