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Bayesian inference

Infer posterior distribution for state X given data Y

p(Y | X)p(X)

X|Y) =
pX|Y) )

p(Y| X): "likelihood"/measurement model

p(X): "prior"
p(Y) = Zp(Y\X)p(X): "evidence"/normalisation
X

In general X is high-dimensional
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Hidden Markov models (HMMs)

X := x;.; entire trajectory = p(X) = p(x,|x,_)---p(x, | x;)p(x;)
Y :=y,.. measurements over all timesteps = p(Y | X) = Hp(yf\xf)

T

Filtering: posterior for current state given history of measurements p(x,|y;.,)
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p(x¢|¢,.,) with er = 0.10
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Teacher-student scenario
(Zdeborova & Krzakala, 2016)

 Teacher generates true state X* ~ p.(X*) then data ¥ ~ p.(Y | X*) with
teacher's parameters 6.
» Student receives only Y and conducts Bayesian inference assuming student

parameters 0 to generate posterior for inferred state X, p.(X|Y)
e Joint distribution is known as the planted ensemble

YI X0 (XDp.(Y| X¥p..(X*
PX, Y, X*) = p(X | Y)p(Y| X*¥)pu(X*) = P OP ;P(;)‘ )PHX*)

At Bayes optimality (Nishimori condition): s = *, X distributed identically to X*

* Note: Even with full knowledge of teacher's parameters, perfect inference is not
possible in general as data is still generated randomly
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Planting

o Student's posterior can be thought of as a Gibbs probability:
Y| X)p(X) e PHEIY)

X1y = PYEPE)
ps(¥) Zy(Y)

» Then observations Y can be thought of as a "disorder field":
p(Y) = ) pu(Y | X*)pu(X*)
X>I<

« However, Y = (V, ).c1.7.4c1.7 are correlated

cf. traditional disordered systems where Y is iid

The true configuration is "planted” in the disorder
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Bayes optimality (* = )

Why is it called Bayes optimal?
For X € X, consider classifier h(Y) € X

Classification performance [y - léh(y),x*]

Theorem: Optimal classifier /A ;,,(Y) = argmax p«(X|Y)
X

Consider Estimator O(Y) € R for real-valued observables O(X) € |
Average mean-squared error of estimator [y y- [(O(Y ) — O(X*))z]

Theorem: Optimal estimator O(Y) = = Xmpa(X|Y) [O(X)]
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Observables

. Mean-squared error of the mean MSEM = Ey, y.. [((O(X»S — O(X*))zl

. Mean-squared error MSE = X ¥ X [(O(X) _ O(X*))zl

« Observable variance 5082 = Ly y= [(0(X)2>S — <0(X)>§]

e ()= “xep XYL ]

|
At Bayes optimality, MSEM = EMSE = 507!
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General guantum inference problem

« leacher prepares state px

» Applies channel € . which records outcomes in a
classical register

G i pig— Y, p(Y,0%) @ | Y)(Y| ® | 0%)(0*

O*Y

0>I<

e Y, O* could be measurement outcomes, or
record of randomly chosen subchannel

e Y is revealed to the student. O* is hidden from
the student.

e Goal of student: infer O*!
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General guantum inference problem

e What's the best that the student can do,
assuming model € ?

» — Simulate a density matrix, and
condition it on measurement outcomes

Y

tI'[[ O‘OjY%sps,O]

0Y)= —— - 55
PLOTY) tr[T yE(ps )]

Ty = tr%@Y (project then trace out)
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General guantum inference problem

 Think of student's simulated density matrix as an actual density matrix:

Y
p = Z pt) Q | Y)Y ® p«(Y)
Y

tr[py(Y)]
 Equivalent of the planted ensemble in the classical setting

e |s symmetric under * <> s at Bayes optimality

» (Can study observable sharpening of the teacher's system:

502 — Z tr[O£ Py p] - tr[0«Py p]*?
T\ u[Pypl u[Pyp)?

. At Bayes optimality 607 = 5082 = MSEM! 'Sharpening' = 'learnability’
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Quantum hidden Markov models (qHMMs)

e Break down whole channel into
subchannels

e Some channels record outcomes:

Rt pr = 2 K*,ap*KI,a ® |a){a]
a

S,
yl Y1

» Y =(y,),c1.7 are revealed, while O*
are hidden
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Quantum hidden Markov models (qHMMs)

 Assume that channel applied at each
step does not depend on any of the 0%

previously revealed hidden registers Y o
S’yt
* Then, can condition channel at each S
timestep separately: !
|
H
Y1 ~

th%S = %Sayt - Ps 7 KS»J’tpSKT
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Connection with HMMs

* For HMMs, the (unnormalised) posterior distribution for the filtering task evolves
according to "the forward algorithm”

qs(xt‘yl:t) — Zps(yt‘xt)ps(xt‘xt—l)qs(xt—l ‘ylzt—l)

X1

« Using vector notation for posterior ex. g,(x,|y;.) = (x| g.(¥;.,),

| qs(ylzt)) — KS,)’L;ESJ | qs(yl:t—l))

. K,

y: diagonal matrix; measurement model (x; | Ksayt\xt) = p.(y,| x,)

- E, . prior Markov kernel (x, | E¢,|x,_{) = py(x;[x,_;)
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Connection with HMMs

 for gHMMs, the student's density matrix O*
evolves as:

yt /11
- K. & adt
ps(ylzt) — S,y s,tps(ylzt—l) ;
8!
* Group all channels between revealed %’pls
registers as &, ; Hey
1
. K, is the Kraus operator from P
conditioning on current measurement
outcome y,

o |f (reduced) density matrix is diagonal, then retrieve HMMs = subset of gHMMs
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Haar-random unitaries

 Haar-random unitary gate u can be thought of as a channel

p - Jd//t(u) upu” & |u){u|

* Can have block diagonal structure

(D)
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Haar-random unitaries

 |f the choice of unitary gate is not revealed to the student, then can trace over
classical registers, which is completely depolarising for each block

p = Jd//t(u) upu' = (2 @ -+ ® D)|[p]

o exX. for uy(p), we get %ssep which acts on diagonal elements of the density matrix
as a 'simple-symmetric exclusion process”,

1
1/2 1/2
1/2 1/2
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Haar-random unitaries

* For a setup with hidden (block-diagonal) Haar-random unitaries and
measurements on observables diagonal in this basis, the student can do

optimal inference using a classical HMM

» Consider local Hilbert space of qubits and qudits Z|,. = C*® C.

We prove that even with revealed unitary gates, in the d > e™" limit, the
student can still do optimal inference with a classical HMM

« Haar unitary <> Markov kernel
e Quantum measurement < classical likelihood/measurement model
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Quantum error correction (QEC) and
random-bond Ising model (RBIM)

» Teacher applies error channel & applies bit-flips with some rate
. = e P*/2 cosh p

» Record current bit-flip status in 'environment' register | f:){(f«|,f; = £ 1

Px — 7T>x<(X ® XenV)p*(X ® Xenv) + (1 — 7T>x<)p>k
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Quantum error correction (QEC) and
random-bond Ising model (RBIM)

» Measure syndrome s* and record measurement outcome

pe = ) PupPe ® | 5¥)(s*]
NG

» Possibly bit-flip errors on the syndrome measurement s* — s

. Goal of the student: Infer f.. from S = (Sz,t)ﬁéiif

. Student assumes 7 = ¢ ”/2 cosh 3
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Quantum error correction (QEC) and
random-bond Ising model (RBIM)

2.2
: N — Bi(B)
. Natural order parameter is [E[(f; — fl t) ] . Pert, from clean Ising
’ | ® o
I B CEY
"y l _ sk 0 B = B+, Bayes Optimal
. Writing the student's guess as f; = 0,0,/ ",
above becomes a ferromagnetic order e
Q
parameter E[(0,0,,)] of an RBIM 4
_ 1.2 1 FM, Inference possible
e B 1/T,p =e?/2coshp. ’
1.0 -
» Sometimes known as the 'planted Ising PM, Inference impossible
0.8

model o 1 2 3 4 5
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Quantum error correction (QEC) and
random-bond Ising model (RBIM)

1.84

— B5(B)
Pert. from clean Ising
® f%o
== BS(B =)
B = B+, Bayes Optimal

FM, Inference possible

PM, Inference impossible

2.2
 Plotin f# — . space — Nishimori condition is
diagonal line e
e (. — 00: clean Ising model -
e [} — 00: Minimum weight perfect matching 1.4 -
(MWPM)
1.2 -
* Not pictured: student's uncertainty in their 1.0 -
guess: §f; = 1 — E[{06,0,,)*]. Confident in .
their wrong answer — Spin-glass phase 0
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(Quantum) Planted SSEP (Agrawal et al., 2022

. Local Hilbert space of qubits and qudits C* ® C¢

» Teacher evolves with Haar-random U(1)-symmetric unitary
gates in brickwork fashion

* Teacher performs on-site weak measurements at every
timestep

00) = ——exp [ 22D
Y {4/% A

» Teacher measure total charge C. at the end

. As a standalone circuit: charge-sharpening 6C?

« Goal of the student: infer C from Y = (yx,t)fellzi = MSE(C)

35
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https://journals.aps.org/prx/abstract/10.1103/PhysRevX.12.041002

Planted SSEP

e In the limit d > e"!, student can conduct optimal inference with assuming a
classical HMM of inferring a SSEP from noisy images:

1
1/2 1/2

2 12 |1Sersie)

p(s, s/ |s,_1,8_1) = (s, 8]

1

1 (yx,t o €*S;Ijt)2
exp| —
\/ 21 2

* (Generalisation of inferring a random walk (SWPK, Lamacraft, 2022)

p*(yx,t ‘ S;xjt) —
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Phase diagram of the planted SSEP

2.00
— Uplateau
* Go beyond existing work by expanding the 1757 s platea
phase diagram into the € — €+« parameter 1.50 - o ‘[)?;P:Teaum
Space 1.25 - D 5C§xact, transition
: > 1.00 A
 Follow (Barratt et al. 2022) to develop replica  ° Sharp /
field theory, which predicts the same 0.75 - ki
universality class of phase boundary 0.50 -
. . L 0.25 - F Cannot inf
 Sharpening and learnability phases coincide 2 RS
for this model 0.00 | |

0.0 0.5 1.0 1.5
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Phase diagram of the planted SSEP

1
— E
0 7= x40 SgN (sx50) ] 0

 Both replica field theory and perturbative
expansion predict that the disconnected
correlator should change sign across the
Bayes optimal line in the fuzzy phase

2

€
_[<SxS()>] ~ Z — 1
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Planted XOR

b1 N+1
|

N\

» Teacher randomly picks Booleans b .o~ ; then
T T

performs XOR operations

J\ J\
e Produces "images" of the Booleans @ @
y ~ /’/(6*19, 03) ZEm ZEm
 Goal of the student: deduce the final bit é é
T ] T T

b1.1 b2.1 7 bgn
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(Quantum) Planted XOR

* Note that applying a SSEP gate + measuring one of the outputs
is like picking XOR or NOTXOR and telling the student which
one you picked

* Produce a quantum model by replacing the XOR gates with
Uy(1y with one projective measurement, and Gaussian

measurements with corresponding weak measurement

* Teacher picks from an ensemble of computational basis states

» Qudit dimension d = 1 is "maximally quantum"

* Dilute projective measurement version studied in (Feng et al.
2024)
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Solving the planted XOR

. p, only depends on p,*'l and ptri%ht which are

iIndependent of each other

* Exploit travelling wave approach originally used to
study the directed polymer (Derrida, Spohn, 1988) and
that near the transition, can linearise the evolution of
the posterior/density matrix (Feng, Nahum, Skinner

2022)
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ONT 4+

Phase diagram of quantum and @ o (4 vam2)
classical planted XOR models

Sharp/
Inference possible

e Again, fuzzy/sharp phases coincide with
iInference possible/impossible phases

Fuzzy/
Inference impossible

0 1 2 3 4

» Classical model has a larger fuzzy phase

— recall that this is same as the teacher hiding "ot dile =)= 3yin(3)

the sampled unitary gates, therefore less | I S \/ 21n ()
information .
: : Sharp/
 Reentrance in the phase diagram, cf. 2D RBIM _ Inference possible

Fuzzy/ Inference impossible

0 1 2 3 4
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Phase diagrams

» All models we studied had same phase boundary ’B "
for fuzzy / sharp and inference impossible / possible

e This does not have to be so!

5C? = MSEM = MSE/2 only on the Bayes
optimal line

FM (Ferromagnetic)

 MSE is like the FM order parameter
. 5C? is like the Edwards-Anderson order parameter

e« Small MSE = small 5C82 < Ferromagnetic phase PM @ SG (Spin glass)
. Large MSE but small C? < Spin Glass phase (Paramagnetio)! \
. Large MSE and large 6C*s < Paramagnetic phase b
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Phase diagrams

» Theorem: Phase diagram for MSEM cannot

curve down, due to the Bayes optimal
estimator theorem

e For a fixed €4, the best the student can do Is

fo set € = €.

* Therefore can only escape the inference
possible phase to inference impossible phase,
but never better
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Quantum state preparation perspective

€x

Underestimating & -
measurement strength e@",/ Overestimating
N measurement strength
Q7
/'(-/_ N
i
) Inference easy/
A low variance
el ==
BO
__)/ Inference hard/
S high variance
.// y €
0 #
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Outlook

 Can we use quantum fluctuations to get different universality class to the
classical HMM models? (ex. quantum planted directed polymer)

 General field-theoretic RG analysis off of the Bayes-optimal line (cf.
Nahum, Jacobson 2025; Gopalakrishnan, McCulloch, Vasseur 2025)

 Non-Markovian inference problems (ex. errors with memory in QEC)
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