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Bayesian inference
Infer posterior distribution for state  given data 





: "likelihood"/measurement model

: "prior"


: "evidence"/normalisation


In general  is high-dimensional

X Y

p(X |Y) =
p(Y |X)p(X)

p(Y)

p(Y |X)
p(X)
p(Y) = ∑

X

p(Y |X)p(X)

X
6



xt xt+1xt−1

yt yt+1yt−1

⋯⋯

: entire trajectory  

: measurements over all timesteps  


Filtering: posterior for current state given history of measurements 

X := x1:t ⟹ p(X) = p(xt |xt−1)⋯p(x2 |x1)p(x1)
Y := y1:t ⟹ p(Y |X) = ∏

τ

p(yτ |xτ)

p(xt |y1:t)

Hidden Markov models (HMMs)
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Teacher-student scenario 
(Zdeborová & Krzakala, 2016)
• Teacher generates true state  then data  with 

teacher's parameters 

• Student receives only  and conducts Bayesian inference assuming student 

parameters  to generate posterior for inferred state , 

• Joint distribution is known as the planted ensemble





• At Bayes optimality (Nishimori condition): ,  distributed identically to 

• Note: Even with full knowledge of teacher's parameters, perfect inference is not 

possible in general as data is still generated randomly

X* ∼ p*(X*) Y ∼ p*(Y |X*)
θ*
Y

θ X ps(X |Y)

p(X, Y, X*) = ps(X |Y)p*(Y |X*)p*(X*) =
ps(Y |X)ps(X)p*(Y |X*)p*(X*)

ps(Y)

s = * X X*

14
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Planting
• Student's posterior can be thought of as a Gibbs probability:





• Then observations  can be thought of as a "disorder field":




• However,  are correlated

cf. traditional disordered systems where  is iid 


The true configuration is "planted" in the disorder

ps(X |Y) =
ps(Y |X)ps(X)

ps(Y)
↔

e−βH(X|Y)

Zs(Y)

Y
p*(Y) = ∑

X*

p*(Y |X*)p*(X*)

Y = (yx,t)x∈1:L,t∈1:T

Y

15



Bayes optimality ( )* = s
Why is it called Bayes optimal?


For , consider classifier 

Classification performance 


Theorem: Optimal classifier 


Consider Estimator  for real-valued observables 

Average mean-squared error of estimator 

Theorem: Optimal estimator 


X ∈ 𝒳 h(Y) ∈ 𝒳
𝔼Y,X* [δh(Y),X*]
hoptimal(Y) = argmax

X
p*(X |Y)

Õ(Y) ∈ ℝ O(X) ∈ ℝ
𝔼Y,X* [(Õ(Y) − O(X*))2]

Õ(Y) = 𝔼X∼p*(X|Y) [O(X)]

16



Observables
• Mean-squared error of the mean 


• Mean-squared error 


• Observable variance 


• 


At Bayes optimality, !

MSEM = 𝔼Y,X* [(⟨O(X)⟩s − O(X*))2]
MSE = 𝔼X,Y,X* [(O(X) − O(X*))2]
δO2

s = 𝔼Y,X* [⟨O(X)2⟩s − ⟨O(X)⟩2
s]

⟨ ⋅ ⟩s = 𝔼X∼ps(X|Y)[ ⋅ ]

MSEM =
1
2

MSE = δO2
s

17
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General quantum inference problem
• Teacher prepares state 


• Applies channel  which records outcomes in a 
classical register 




• ,  could be measurement outcomes, or 
record of randomly chosen subchannel


•  is revealed to the student.  is hidden from 
the student. 


• Goal of student: infer !

ρ*,0

𝒞*

𝒞* : ρ*,0 → ∑
O*,Y

ρ*(Y, O*) ⊗ |Y⟩⟨Y | ⊗ |O*⟩⟨O* |

Y O*

Y O*

O*

1919



General quantum inference problem
• What's the best that the student can do, 

assuming model ? 


• → Simulate a density matrix, and 
condition it on measurement outcomes 






•  (project then trace out)

𝒞s

Y

ps(O |Y) =
tr[ℙO𝒯Y𝒞sρs,0]
tr[𝒯Y𝒞s(ρs,0)]

𝒯Y = tr𝒴𝒫Y
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General quantum inference problem
• Think of student's simulated density matrix as an actual density matrix:





• Equivalent of the planted ensemble in the classical setting

• Is symmetric under  at Bayes optimality


• Can study observable sharpening of the teacher's system:


 


• At Bayes optimality ! 'Sharpening' = 'learnability'

ρ = ∑
Y

ρs(Y)
tr[ρs(Y)]

⊗ |Y⟩⟨Y | ⊗ ρ*(Y)

* ↔ s

δO2
* = ∑

Y ( tr[O2
*𝒫Y ρ]

tr[𝒫Y ρ]
−

tr[O*𝒫Y ρ]2

tr[𝒫Y ρ]2 )
δO2

* = δO2
s = MSEM

21



Quantum hidden Markov models (qHMMs)

• Break down whole channel into 
subchannels


• Some channels record outcomes:





•  are revealed, while  
are hidden

ℛ* : ρ* → ∑
a

K*,aρ*K†
*,a ⊗ |a⟩⟨a |

Y = (yt)t∈1:T O*

22
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Quantum hidden Markov models (qHMMs)

• Assume that channel applied at each 
step does not depend on any of the 
previously revealed hidden registers


• Then, can condition channel at each 
timestep separately:


𝒯yt
ℛs = 𝒦s,yt

: ρs → Ks,yt
ρsK†

s,yt

23
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Connection with HMMs
• For HMMs, the (unnormalised) posterior distribution for the filtering task evolves 

according to "the forward algorithm"


 


• Using vector notation for posterior ex. ,





• : diagonal matrix; measurement model 


• : prior Markov kernel 

qs(xt |y1:t) = ∑
xt−1

ps(yt |xt)ps(xt |xt−1)qs(xt−1 |y1:t−1)

qs(xt |y1:t) = (xt |qs(y1:t))
|qs(y1:t)) = 𝖪s,y1:t

𝖤s,t |qs(y1:t−1))

𝖪s,yt
(xt |𝖪s,yt

|xt) = ps(yt |xt)

𝖤s,t (xt |𝖤s,t |xt−1) = ps(xt |xt−1)

24



Connection with HMMs
• for qHMMs, the student's density matrix 

evolves as:





• Group all channels between revealed 
registers as 


•  is the Kraus operator from 
conditioning on current measurement 
outcome 

ρs(y1:t) = 𝒦s,yt
ℰs,tρs(y1:t−1)

ℰt

𝒦s,yt

yt
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• If (reduced) density matrix is diagonal, then retrieve HMMs ⇒ subset of qHMMs 



Haar-random unitaries
• Haar-random unitary gate  can be thought of as a channel





• Can have block diagonal structure 


ex. 

u

ρ → ∫ dμ(u) uρu† ⊗ |u⟩⟨u |

uU(1) = u(−1) ⊕ u(0) ⊕ u(1) =
u(−1)

u(0)

u(1)

26



Haar-random unitaries
• If the choice of unitary gate is not revealed to the student, then can trace over 

classical registers, which is completely depolarising for each block





• ex. for , we get  which acts on diagonal elements of the density matrix 
as a "simple-symmetric exclusion process",


.

ρ → ∫ dμ(u) uρu† = (𝒟 ⊕ ⋯ ⊕ 𝒟)[ρ]

uU(1) ℰssep

1
1/2 1/2
1/2 1/2

1

27



Haar-random unitaries
• For a setup with hidden (block-diagonal) Haar-random unitaries and 

measurements on observables diagonal in this basis, the student can do 
optimal inference using a classical HMM


• Consider local Hilbert space of qubits and qudits . 
We prove that even with revealed unitary gates, in the  limit, the 
student can still do optimal inference with a classical HMM


• Haar unitary  Markov kernel

• Quantum measurement  classical likelihood/measurement model

ℋloc = ℂ2 ⊗ ℂd

d ≫ eLT

↔
↔

28
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Quantum error correction (QEC) and  
random-bond Ising model (RBIM)

• Teacher applies error channel  applies bit-flips with some rate 



• Record current bit-flip status in 'environment' register , 


ℰ
π* = e−β*/2 cosh β*

| f*⟩⟨ f* | fl = ± 1

ρ* → π*(X ⊗ Xenv)ρ*(X ⊗ Xenv) + (1 − π*)ρ*

30



Quantum error correction (QEC) and  
random-bond Ising model (RBIM)

• Measure syndrome  and record measurement outcome





• Possibly bit-flip errors on the syndrome measurement 


• Goal of the student: Infer  from 


• Student assumes 

s*

ρ* → ∑
s*

ℙs*ρ*ℙs* ⊗ |s*⟩⟨s* |

s* → s

f* S = (sl,t)t∈1:T
l∈1:L

π = e−β /2 cosh β

31
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Quantum error correction (QEC) and  
random-bond Ising model (RBIM)

• Natural order parameter is 


• Writing the student's guess as , 
above becomes a ferromagnetic order 
parameter  of an RBIM


• , 


• Sometimes known as the 'planted Ising 
model'

𝔼[( fl − f*l,t)
2]

fl = σvσv′￼
f*l

𝔼[⟨σvσv′￼
⟩]

β ↔ 1/T p = e−β*/2 cosh β*
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Quantum error correction (QEC) and  
random-bond Ising model (RBIM)

• Plot in  space → Nishimori condition is 
diagonal line


• : clean Ising model


• : Minimum weight perfect matching 
(MWPM)


• Not pictured: student's uncertainty in their 
guess: . Confident in 
their wrong answer → Spin-glass phase

β − β*

β* → ∞

β → ∞

δf2
l = 1 − 𝔼[⟨σvσv′￼

⟩2]
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(Quantum) Planted SSEP (Agrawal et al., 2022)

• Local Hilbert space of qubits and qudits 


• Teacher evolves with Haar-random -symmetric unitary 
gates in brickwork fashion


• Teacher performs on-site weak measurements at every 
timestep





• Teacher measure total charge  at the end


• As a standalone circuit: charge-sharpening 


• Goal of the student: infer  from  ⇒ 

ℂ2 ⊗ ℂd

U(1)

Q(y) =
1

4 2π
exp (−

(y − ϵ*Z)2

4 )
C*

δC2
*

C Y = (yx,t)t∈1:T
x∈1:L MSE(C)

35
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Planted SSEP
• In the limit , student can conduct optimal inference with assuming a 

classical HMM of inferring a SSEP from noisy images:








• Generalisation of inferring a random walk (SWPK, Lamacraft, 2022)

d ≫ eLT

p(st, s′￼t |st−1, st−1) = (st, s′￼t |

1
1/2 1/2
1/2 1/2

1

|st−1, s′￼t−1)

p*(yx,t |s*x,t) =
1

2π
exp (−

(yx,t − ϵ*s*x,t)2

2 )

36
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Planted SSEP
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Phase diagram of the planted SSEP

• Go beyond existing work by expanding the 
phase diagram into the  parameter 
space


• Follow (Barratt et al. 2022) to develop replica 
field theory, which predicts the same 
universality class of phase boundary


• Sharpening and learnability phases coincide 
for this model

ϵ − ϵ*
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Phase diagram of the planted SSEP

• Both replica field theory and perturbative 
expansion predict that the disconnected 
correlator should change sign across the 
Bayes optimal line in the fuzzy phase


𝔼[⟨sxs0⟩] ∼ ( ϵ2
*

ϵ2
− 1)
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Planted XOR

• Teacher randomly picks Booleans  then 
performs XOR operations


• Produces "images" of the Booleans



• Goal of the student: deduce the final bit

b1:2N,1

y ∼ 𝒩(ϵ*b, σ2
*)
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(Quantum) Planted XOR
• Note that applying a SSEP gate + measuring one of the outputs 

is like picking XOR or NOTXOR and telling the student which 
one you picked 


• Produce a quantum model by replacing the XOR gates with 
 with one projective measurement, and Gaussian 

measurements with corresponding weak measurement


• Teacher picks from an ensemble of computational basis states


• Qudit dimension  is "maximally quantum"


• Dilute projective measurement version studied in (Feng et al. 
2024)

uU(1)

d = 1

41



Solving the planted XOR

•  only depends on  and  which are 
independent of each other


• Exploit travelling wave approach originally used to 
study the directed polymer (Derrida, Spohn, 1988) and 
that near the transition, can linearise the evolution of 
the posterior/density matrix (Feng, Nahum, Skinner 
2022)

ρt ρleft
t−1 ρright

t−1

42



Phase diagram of quantum and 
classical planted XOR models

• Again, fuzzy/sharp phases coincide with 
inference possible/impossible phases


• Classical model has a larger fuzzy phase  
→ recall that this is same as the teacher hiding 
the sampled unitary gates, therefore less 
information


• Reentrance in the phase diagram, cf. 2D RBIM
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Phase diagrams
• All models we studied had same phase boundary 

for fuzzy / sharp and inference impossible / possible

• This does not have to be so! 

 only on the Bayes 
optimal line


•  is like the FM order parameter

•  is like the Edwards-Anderson order parameter


• Small  ⇒ small  ↔ Ferromagnetic phase

• Large  but small  ↔ Spin Glass phase

• Large  and large  ↔ Paramagnetic phase

δC2
s = MSEM = MSE/2

MSE
δC2

s

MSE δC2
s

MSE δC2
s

MSE δC2s
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Phase diagrams

• Theorem: Phase diagram for  cannot 
curve down, due to the Bayes optimal 
estimator theorem


• For a fixed , the best the student can do is 
to set 


• Therefore can only escape the inference 
possible phase to inference impossible phase, 
but never better

MSEM

ϵ*
ϵ = ϵ*

46
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Quantum state preparation perspective
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Outlook

• Can we use quantum fluctuations to get different universality class to the 
classical HMM models? (ex. quantum planted directed polymer)


• General field-theoretic RG analysis off of the Bayes-optimal line (cf. 
Nahum, Jacobson 2025; Gopalakrishnan, McCulloch, Vasseur 2025)


• Non-Markovian inference problems (ex. errors with memory in QEC)
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