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Abstract
Moduli space of a gauge field theory is an abstract space of vacuum expectation values
of scalar fields. It is of physical significance as a point in this space must be chosen
before the masses of particles can be determined. For N = 4, d = 2 + 1 supersymmetric
gauge field theories, whose information can be encoded in quiver diagrams, there are
two branches in its moduli space: the Higgs branch and the Coulomb branch, where
the latter can be calculated using the monopole formula. In this article, the Coulomb
branch of An, Cn, F4, G2 Dynkin quivers and their affine counterparts were studied by
calculating their Hilbert series using the monopole formula. In addition to confirming
previous predictions, new implications on the choice of ungauging location (fixing one of
the phases) were found, which we state as the ungauging hypothesis.
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Summary
The project had two main components. The first was to understand the physical back-
ground and the mathematical ‘rules of the game’ behind quiver gauge theories. The
second was calculate the Hilbert series, which encodes information the moduli space of a
theory. The calculations were both analytic and computational.

The structure of the article is as follows. Sec. 1 introduces the reader to gauge field
theories. It discusses the importance of symmetry, that the moduli space is an abstract
space of vacua, and that it can be calculated using the Hilbert series via the monopole
formula. Sec 2. covers the basic intuitions and mathematical concepts in representation
theory, and the role of Hilbert series in algebraically describing spaces such as orbifolds.
Sec. 3 and 4 deals with the specifics of the Coulomb branch of N = 4, d = 2 + 1 quiver
gauge theories, the problems in resolving the Hilbert series, and the methods employed to
tackle them. Finally Sec. 5 and 6 discusses the findings some of which confirm the earlier
claims and some which we believe to be new findings, which leads us to the ungauging
hypothesis. We discuss further work to be done to test it.

The project, which took place in term 2, was evenly distributed between my project
partner and I. However, I had partially worked on the project in term 1 while my partner
did not. The work for the An quiver was completed during that time.
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1 Introduction
Our best and most successful understanding of fundamental particles, the Standard
Model, is a gauge field theory. Field theory meaning that the equation of motion, the
Lagrangian, is governed by a set of scalar fields {ψ̂i(x)} defined at every point in space-
time, and gauge theory meaning that transforming the configurations of ψ̂i(x)’s in the
Lagrangian by some symmetry group action leaves the Lagrangian invariant. For the
Standard Model, this symmetry is famously described by the product of three symmetry
groups, U(1)× SU(2)× SU(3).

However, the Standard Model is incomplete; it cannot unify gravity with the other funda-
mental forces. This is one of the biggest unsolved problems in physics today. One attempt
to unify the forces is via supersymmetry (SUSY), which adds a higher level of symmetry
by linking fermions, the matter particles, with bosons, the force carriers.

In a gauge field theory, each scalar field has a vacuum expectation value 〈ψ̂i〉, or VEV
for short. There also exists a scalar potential Ŵ({ψ̂i}), a function of these scalar fields,
where it is required that Ŵ = 0 for a vacuum. The configurations of VEVs, 〈ψ̂i〉’s where
Ŵ = 0 can be described as an abstract space; this is called a moduli space [6]. A moduli
space describes the space of vacua, and is the topic of interest for this article. They are
important because a point in this space must be chosen before masses of particles can
be determined. Moduli spaces, some of which are ‘folded’ spaces called orbifolds, can be
algebraically described by functions called Hilbert series (HS). These will be discussed
later.

Figure 1: A diagram of a moduli space, embedded in a space of scalar field VEVs.

This article considers the Coulomb branch of N = 4, d = 2 + 1 supersymmetric gauge
field theories, where N corresponds to ‘the number of supersymmetries’, d = 2 + 1 to 2
spatial and 1 temporal dimensions, and Coulomb branch refers to one part of the moduli
space, the other being the ‘Higgs branch’. They are hereby referred to as quiver gauge
theories (QGTs). It is a family of toy theories where the only parameters are the gauge
symmetry groups, ones that can be encoded in diagrams called quiver diagrams. This
family is considered to be the simplest of its kind, and is considered to be the building
blocks to understand higher theories.

Recently, the monopole formula was proposed for QGTs [3], which simplified the com-
putation of the HS of the Coulomb branch, allowing the construction of it from only the
quiver diagram and a simple set of formulas. The main objective of this article is to study
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the Coulomb branches and symmetries of various QGTs by calculating their respective
Hilbert series, and to develop an intuition and understanding of the mathematics behind
them.

2 Mathematical Background

2.1 Moduli Space

For N = 4, d = 2 + 1 supersymmetric gauge field theories (QGTs), the moduli space has
two branches: the Higgs branch and the Coulomb branch. To illustrate what a branch is,
we examine a simple model.

Example. XYZ Model

One of the simplest example of a moduli space is the XYZ Model [2]. Turns out, a
supersymmetric gauge theory in 4d can have a scalar potential Ŵ described by three
scalar fields, as:

Ŵ(ψ̂1, ψ̂2, ψ̂3) = |ψ̂1ψ̂2|2 + |ψ̂1ψ̂3|2 + |ψ̂2ψ̂3|2. (2.1)

Recall that at a vacuum, Ŵ = 0. Then the three solutions, or the three branches of
moduli space, are

ψ̂1 6= 0; ψ̂2 = ψ̂3 = 0 =⇒ 〈ψ̂1〉 ∈ C; 〈ψ̂2〉 = 〈ψ̂3〉 = 0, (2.2a)

ψ̂2 6= 0; ψ̂1 = ψ̂3 = 0 =⇒ 〈ψ̂2〉 ∈ C; 〈ψ̂1〉 = 〈ψ̂3〉 = 0, (2.2b)

ψ̂3 6= 0; ψ̂1 = ψ̂2 = 0 =⇒ 〈ψ̂3〉 ∈ C; 〈ψ̂1〉 = 〈ψ̂2〉 = 0. (2.2c)

For each branch, the free VEV can have any complex value; therefore each branch is the
space of C. Note that the three branches are equal at the origin when all values are equal
to zero. Turns out, this point is physically important because this is where ‘extra massless
states’ arise.

Just as the XYZ displays branches in its moduli space, the moduli space of N = 4,
d = 2 + 1 supersymmetric gauge field theories has the Higgs branch and the Coulomb
branch, which agree at the origin. The Higgs branch is simple to calculate but the
Coulomb branch is infamously difficult due to quantum corrections it receives. In the cases
dealt in this article, the space of Coulomb branch are orbifolds and varieties ; discussed
later.

2.2 Groups and Representations

To understand the necessary concepts and the results, we introduce basic intuitions of
group and representation theory.

Consider a set of transformations {gi} all of which keeps some object, say the equation
of motion, invariant. Also suppose that applying one transformation, ga, after another,
gb, corresponds to another single transformation, gc. Denoting this as a multiplication,
gc = ga · gb. This structure can be abstractly encoded in a mathematical object called a
group. For continuous transformations, there is a continua of group elements. Turns out,
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there is a class of continuous groups called compact Lie groups, where each group element
can be thought of as a point on a manifold, with a ‘multiplication’ defined.

Groups can also be ‘represented’ as transformations in vector spaces, as representations :

Definition. Representation

A representation ρ of a group G is map between each group element g ∈ G and matrix ρ(g)
such that group structure is preserved. That is, if ga · gb = gc, then ρ(ga) · ρ(gb) = ρ(gc).

Clearly, the representations are matrices in vector spaces, so one example of ‘group action’
is multiplication by representations on a set of vectors. Turns out, representations of
compact Lie groups are indexed by a tuple of non-negative integers called highest weights.
The compact Lie groups dealt in this article, labeled with Alphabets, or by their alternate
names, are

An = SU(n+ 1), Bn = SO(2n+ 1), Cn = Sp(n), Dn = SO(2n), E6,7,8, and F4,

where the number n in the subscript corresponds to the number of parameters in the
highest weights.

Definition. Character of a Representation

Character χG[highest weights] of representation of group G is the trace of representation ρ pa-
rameterised by the highest weights.

Example. A1 = SU(2)

Elements of the continuous group SU(2) is parameterised by rotation angle θ. Its repre-
sentations are parameterised by highest weight l′. Its character is

χ
SU(2)
[l′] (θ) = e−il

′θ + e−i(l
′−2)θ + ...+ e−il

′θ (2.3)

The character can be written in different basis. In y = eiθ basis,

χ
SU(2)
[l′] (y) = y−l

′
+ y−(l′−2) + ...+ yl

′
(2.4)

As an aside, we note that defining s = l′/2, and x = eiθ/2, s corresponds to angular
momentum number and the exponent of each term to angular momentum projection
number m, from quantum mechanics:

χ
SU(2)
[l′] (x) = x−l + x−(l−1) + ...+ xl. (2.5)

We can also note that the character can be thought of as a points on a lattice. For the
example of SU(2), we can think of y as a vector called a weight vector and its exponents
as its components. Then each term in the character is a point in R, as shown in Fig. 2.

Figure 2: The weight lattice of SU(2).

We can see that the character forms a lattice of points; we call it the weight lattice. In
general, the weight lattice lives in Rn space where n is the number of parameters in highest
weights.
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2.3 Root Systems and Dynkin Diagrams

In the most general sense, root systems are a system of vectors. It can be represented with
a Dynkin diagram, where each node denotes a root vector αi, and each edge, which can
be weighted-directed, denotes the relationship between two root vectors. The relations
are summarised in Fig. 3. Dynkin diagrams relevant to the article are shown in Fig . 4.

Figure 3: A table of Dynkin diagram rules. Any two disconnected nodes make 90◦ to each
other

Figure 4: Relevant Dynkin diagrams; each represent a root system

Example. C2

Consider the Dynkin diagram C2. This produces two vectors, α1,α2 where 2α2
1 = α2

2

and θ1,2 = 135◦. Then, the root system can be constructed as Fig. 5.

Figure 5: The Dynkin diagram for C2 (left) and the resulting root system (right)
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Dynkin diagrams and Lie groups (of the same name) are related in the following sense:
the root vectors {αi} (of Dynkin diagrams) can be directly related to the fundamental
weight vectors {yi} (from characters) using a Cartan matrix that can be constructed
from the Dynkin diagrams. Also, the vector from any one weight to another in the weight
lattice can be written as a sum of root vectors with integer components.

A Cartan matrix Cst (where s denotes source, t denotes target, denoting node index),
is constructed with 2’s on the diagonal, 0 if unconnected, and −λ if connected, where
weighting λ = 1 unless for a directed-weighted edge, if s → t follows the ‘arrow’, then λ
is the weighting of the edge.

Example. G2

For G2 (shown as one of the examples in Fig. 4), the transformation from weight basis to
root basis is (

α1

α2

)
=

(
2 −3
−1 2

)(
y1

y2

)
(2.6)

where C12 = −3, since the edge between α1 and α2 is weighted-directed by weighting 3,
and 1→ 2 follows the ‘arrow’.

2.4 Orbifolds

An orbifold M/G is a manifold M acted upon by a finite group G, where G ‘marries’
different points inM together, ‘folding’ it in to an orbifold. For a more precise definition,
an orbit must be defined.

Definition. Orbit

An orbit O(p ∈ M;G) of a point p ∈ M by group G is the set of points that p goes to
under each group element gi ∈ G.

Example. O(p ∈ C2;Z2)

Let p = (p1, p2)T be a vector in C2. The two group elements g1, g2 of Z2 can be written
as matrix representations ρ(gi) in C2, as

ρ(g1) =

(
1 0
0 1

)
; ρ(g2) =

(
−1 0
0 −1

)
. (2.7)

In this case, group action by element gi is given by ρ(gi) · p, so

O(p ∈ C2;Z2) = {ρ(g1) · p, ρ(g2) · p} = {p,−p}. (2.8)

Definition. Orbifold.

An orbifold, M/G of manifold M and finite group G is space of all orbits:

M
G

= {O(p;G) | p ∈M} (2.9)

Definition. Singularity.
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A singularity of an orbifold is a point in which group action leaves the point invariant.

Example. C2/Z2

So C2/Z2 can be seen as all the coordinates married with their negatives, i.e.

C2

Z2

= {{p,−p} | p ∈ C2}. (2.10)

Note that the point p = (0, 0)T is a singularity, since p = −p = (0, 0)T .

2.5 Hilbert Series

Orbifolds can also be described algebraically, using a Hilbert series (HS).

Definition. Hilbert Series

A refined Hilbert series of fugacity t, H(t), is a function that when series expanded about
t = 0, the term of each order of t enumerates every unique monomial of that order.

So, in case of an orbifold ofM/G, the HS enumerates every unique monomial ofM that
is invariant under G.

Example. C2

One of the simplest example of a Hilbert series is the flat space of C2. Using two variables
x and y for each dimension, we see that the unique monomial of order 0 is 1 = x0y0, of
order 1 are x, y, of order 2 are x2, xy, y2 and so on. The refined Hilbert series that encodes
this is

HC2(x, y, t) =
1

(1− xt)(1− yt)
= 1 + (x+ y)t+ (x2 + xy + y2)t2 + ... (2.11)

we can ‘unrefine’ the Hilbert series by setting x = y = 1. Then the series only counts the
number of monomials:

HC2(t) =
1

(1− t)2
= 1 + 2t+ 3t2 + ... (2.12)

Example. C2/Z2

Now let’s consider a Z2 action on C2. Since we are looking for monomials that are invariant
under the transformation (x, y)→ (−x,−y), we can easily see that all the monomials of
odd powers are not invariant. Then the Hilbert Series can be written as

HC2/Z2
(x, y, t) =

1

2

(
1

(1 + xt)(1 + yt)
+

1

(1− xt)(1− yt)

)
= 1 + (x2 + xy + y2)t2 + ...

(2.13)

We can also define X := x2, Y := y2, Z := xy, as variables to describe C2/Z2 algebraically.
These variables are called generators as they can be multiplied generate all the Z2 invariant
monomials. Since the three generators are related as XY = Z2, the equation of a cone,
C2/Z2 is homeomorphic to ‘complex cone’, embedded in C3. From this, we can see that
Z2 action also created curvature on an originally flat C2 space.
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3 Quiver Gauge Theories

3.1 Background

In a supersymmetric gauge field theory, each scalar field (bosons) has a superpartner [12].
The theory is invariant under rearrangement between the two by some symmetry group;
these interchange operators are called supercharges. There also exists another symmetry
called R-symmetry, where the configurations of supercharges themselves can be rearranged
with a symmetry group without affecting the phyiscs.

Collection of scalar fields with their SUSY partners are called multiplets, or superfields.
For QGTs, there are two types of multiplets: vectormultiplets and hypermultiplets. On
the Coulomb branch, VEVs of scalar fields of vectormultiplets are non-zero, whereas
on the Higgs branch, VEVs of scalar fields of hypermultiplets are non-zero. Turns out,
because vectormultiplets contain gauge couplings, the Coulomb branch receives quantum
corrections in low-energy scales. This made it difficult to calculate.

For the Coulomb branch, the total symmetry always contains with R-symmetry with
another factor. This extra factor is hereby referred to as ‘global symmetry’ [6], and one
of the main features of the theories.

3.2 Quiver Diagrams

QGTs can be described pictorially using a quiver diagram. A quiver diagram, with an
example shown in Fig. 6, is a weighted-directed graph composed of nodes and edges. It
encodes information about a QGT. From only this diagram and the monopole formula
which will be discussed later, the expression for the Hilbert series for Coulomb branch the
moduli space can be constructed.

Figure 6: An example of a quiver; this one looks like the F4 Dynkin diagram.

On a quiver, each node corresponds to a vectormultiplet, corresponding to a local gauge
group, (bosons). For this article, only unitary quivers, whose nodes are of unitary groups
were studied. The number N inside each node represents the rank of the unitary gauge
group U(N). Each node with rank Ni holds Ni ‘GNO/monopole charges’, which are of
interest in the construction of the HS.

Each edge corresponds to a hypermultiplet, corresponding to a matter particle (fermion).
It connected to a node if it is charged under the node’s gauge group. An edge can be
weighted-directed, in which case it is represented by an ‘inequality’ and doubling/tripling
of the lines; this is shown on the edge between the U(3) and U(2) node in the example
in Fig. 6. The monopole charges on the bigger side of the ‘inequality’ are scaled by the
number of lines. If a quiver has no weighted-directed edges, it is said to be simply laced.

12



3.3 QGT Monopole Formula

Recently, the monopole formula, which greatly simplifies the calculation of the Coulomb
branch, was introduced [3]. It is in Eq. (3.1):

H(z, t) =
∑
{mi}

(
t2∆({mi})

#nodes∏
i=1

z
J(mi)
i Pi(mi, t)

)
(3.1)

where

#nodes is the number of nodes in the quiver,

z denotes (z1, ..., z#nodes
), the topological fugacities of each node,

t denotes the fugacity,

{mi} denotes the set of monopole charges, with the ith node contributingmi = {mi,1, ...,mi,Ni
}

charges, and Ni is the rank of the U(Ni) node,

∆ is the conformal dimension,

J(mi) is the topological charge,

and finally Pi(mi, t) is the classical dressing factor, which is itself piecewise with respect
to relationships between a node’s monopole charges, mi = (mi,1, ...,mi,Ni

).

This is the starting point for all calculations of Hilbert series of Coulomb branches. Al-
though the derivation of the monopole formula is non-trivial, the interpretation is as
follows: the Hilbert series for the Coulomb branch counts gauge invariant ‘monopole op-
erators’ (which themselves are parameterised by GNO charges, {mi}), over all possible
charge configurations [10]. This describes the Coulomb branch because there exists a one-
to-one correspondence between gauge invariant dressed monopole operators (the physical
operators) and the holomorphic polynomials that form the holomorphic ring (that mathe-
matically describes the space) of the Coulomb branch [3, 8]. Each factor will be discussed
in detail.

3.3.1 Summation Limits

Each node i contributes mi = (mi,1, ...,mi,Ni
) monopole charges, where a charge can be

an integer. For unitary quivers, the summand is summed over all possible configurations
of monopole charges, with the limits (∞ > mi,1 ≥ ... ≥ mi,Ni

> −∞) for each node. That
is, for each node, the summation operator is

∞∑
mi,1=mi,2

∞∑
mi,2=mi,3

· · ·
∞∑

mi,Ni−1=mi,Ni

∞∑
mi,Ni

=−∞

. (3.2)

3.3.2 Conformal Dimension

For the cases of unitary quivers, conformal dimension is given by
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2∆ =
∑
nodes

2∆node +
∑
edges

2∆edge (3.3)

where for node i it is the sum of all the possible differences between its charges:

2∆node = −2

Ni∑
j>k

|mi,j −mi,k| , (3.4)

and for each edge connected to node i and i′, it is all the possible differences of charges
between the two nodes:

2∆edge =

Ni∑
j=1

Ni′∑
k=1

|λimi,j − λi′mi′,k| (3.5)

where the weighting λi = 1 except for the case of weighted-directed edge where the
charges of node on the bigger side of the ‘inequality’ has λi equal to the weight of the
edge. Physically, the conformal dimension ∆ for a given configuration of GNO charges
corresponds to the energy of this state [9].

A quiver is good if for all possible values of {mi}, 2∆ > 1, ugly if there exists some cases
where 2∆ = 1 such that 2∆ ≥ 1, and bad if there exists any values such that 2∆ < 1 [4].
This article only deals with good and ugly quivers; the monopole formula only works for
good and ugly quivers.

The form of the conformal dimension is what makes resolving the Hilbert series computa-
tionally challenging, as all cases of inequalities must be considered. Once all the different
cases are considered, the series is simply a product and sum of infinite geometric series.

3.3.3 Topological Charge

For each node carrying a U(N) gauge symmetry, noting the Bianchi identity on its field
strength suggests that there is an additional ‘conserved current’, J (1) [11]. Since there is
a conserved quantity, Noether’s theorem suggests there exists an additional global U(1)J
symmetry. This is called the topological, or hidden symmetry. It is said to be hidden
because none of the basic fields are charged under it; however, it happens that monopole
operators do interact with this symmetry and carry ‘topological charges’. We keep track
of these via topological fugacities, z The topological charge for node i, J(mi), is given by

J(mi) =

Ni∑
j=1

mi,j (3.6)

3.3.4 Dressing Factor

For a given node i holdingmi = (m1, ...,mNi
) monopole charges, its dressing factor is con-

structed using the partition of the monopole charges of the node, λ(mi) = (λ1(mi), λ2(mi), ...).
A partition can be constructed from a Young’s tableau, where the rule to construct one
is as below.
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1. From a list of numbers a = (a1, ..., aN), on the first row, from left to right, draw as
many boxes as the frequency of the smallest number on the list a.
2. For n = 2 to N, on the nth row, from left to right, draw as many boxes as the frequency
of the nth smallest number on the list a.
3. Then, λk is equal to the number of boxes on the kth column; k = 1, 2, 3...

Then, the dressing factor for node i given by

Pi(mi, t) =

#columns∏
j=1

1

(1− t2j)λj(mi)
. (3.7)

Example. U(2) Node

Consider a node with rank N = 2. Then its monopole charges are (m1,m2). Given the
limits of the sums, there are two cases: m1 = m2, and m1 > m2. The Young tableau for
both cases are shown in Fig. 7

Figure 7: Two constructions of Young’s tableau, for m1 = m2 (left) and m2 > m1 (right).

Considering the two cases, the dressing factor for this node can be written as

P (m, t) =

{
1

(1−t2)2
m1 > m2

1
(1−t2)(1−t4)

m1 = m2

. (3.8)

So, the dressing factor is a piecewise function.

It happens that when GNO charges are not equal, the gauge group are broken into smaller,
residual gauge groups; for the example, when m2 > m1, the U(2) gauge group is broken
into U(1)×U(1). Essentially, the dressing factor ‘dresses’ the monopole operators to make
sure they include other scalar fields from the vectormultiplet that are invariant under the
new residual gauge group, so that the HS includes all and only the invariant monopole
operators.

3.4 Excess and Balance

For each node, a notion of excess can be established, where for node i, its excess εi is

εi = (weighted sum of neighbour’s ranks)− 2 · (own rank), (3.9)

where a neighbouring node is weighed by 1 unless the neighbour is connected by a
weighted-directed edge, and is on the smaller side of the ‘inequality’. If so, its rank
is weighed by the weighting of the edge.
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Fig .8 shows that the example quiver has three nodes balanced and one minimally imbal-
anced. For the U(3) node, the weighted ranks of neighbours ranks are 2 from the left and 2
from the right (as it is on the smaller side of the ‘inequality’), so ε = (2+2×2)−(2×3) = 0.

Figure 8

A node is said to be balanced if εi = 0, minimally imbalanced if εi = −1, and imbalanced
otherwise.

A quiver is good if all nodes have εi ≥ 0, and can be ugly if there are some minimally
imbalanced nodes and bad if any of the nodes have εi < −1.

3.5 Ungauging Scheme

The monopole formula reaveals that the HS sums over all possible differences of GNO
charges. Since the sum is over infinities, and the conformal dimension has terms of
absolute value of difference of charges, without any constraints, there are infinite terms
for each order of t; the HS diverges.

We can constrain one of the charges by ‘ungauging’ a node, which is a mathematical trick
where ungauging the ith node alters the HS as∑

mi,1

→ 1, (3.10a)

Pi(t)→ Pi(t) · (1− t2), and (3.10b)

mi,1 → 0, (3.10c)

setting one of the monopole charges to zero [10]. On the quiver diagram, if the node was
of U(1), it becomes a square with a ‘1’ inside of it. If it was of U(Ni > 1), it becomes
a ‘squircle’, with the same Ni written inside of it. The two cases are differentiated as
the former case’s HS is equivalent to switching the node to a flavour node of SU(1) (not
discussed in this article) and holds no charge, but the latter case is only a mathematical
trick and still holds Ni−1 charges. Fig. 9 illustrates the Quiver shown in Fig. 6 ungauged
at different locations.

Figure 9: The example quiver with a U(1) node ungauged (left) and a U(2) node ungauged
(right).

Since U(1) transformation refers to a shift in phase eiθ, ungauging is setting one of the
phases to zero, factoring out the U(1) of a U(N) node. For a good or ugly quiver, once a
node is ungauged, the Hilbert Series is sufficiently constraint to converge.
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The notion of ‘long’ and ‘short’ nodes can also be defined. Long nodes are nodes on the
greater side of the ‘inequality’, or all nodes of a simply laced quiver. Short nodes are
nodes on the smaller side of the ‘inequality’. This is shown in Fig. 10.

Figure 10: Long and short nodes

3.6 Forms of Hilbert Series

In order to extract information about the global symmetry and the moduli space, the
Hilbert series is resolved into a more convenient form.

Similarly to Sec. 2.5, an unrefined Hilbert series is where all the topological fugacities are
set to 1, (zi → 1), and the refined HS is the original Hs with topological charges as is.

Because a HS in principle can be broken down into geometric sums, it is possible to write
it in a rational form. From the unrefined form of the rational form it is possible to deduce
the moduli space for simple cases as Sec. 2.5.

In some cases, it is also possible to write the Hilbert series as series expansions of t, where
each term is a character of a representation of a group with the highest weights that is a
function of orders of t.

It turns out that the t2 term corresponds to the character of the adjoint representation
of the gauge symmetry group in terms of the topological fugacities, z, where the adjoint
representation is defined as representation whose character’s dimension is same as the
group’s. Therefore from the t2 term of the series, the global symmetry group can be
deduced.

Sec. 2.2 showed that characters can have multiple basis. Therefore, in general, a fugacity
map from the quiver’s basis to a more familiar weight basis {yi}may be necessary.

Consider a quiver’s basis z = (z1, ..., z#) and weight basis y = (y1, ..., y#). The fugacity
map from z to y can be represented in matrix form with an operator (∗):z1

...
z#

 =

a11 · · · a1#
...

. . .
...

a#1 · · · a##

 ∗
y1

...
y#

 (3.11)

which denotes that zj =
∏#

k=1 y
ajk
k , such that each element of the ‘vector’ is raised to

power by the matrix element and multiplied over instead. For a transformation between
root and weight basis, the Cartan matrix would be the transformation matrix.

Plethystic exponential, PE[f(x1, ..., xn)], of a function f(x1, ..., xn) is defined to be [5]

PE[f(x1, ..., xn)] = exp

(
∞∑
k=0

[
f(xk1, ..., x

k
n)

k

])
. (3.12)
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It can be used to write long HSs compactly. For example, it can be shown that

PE[(z1 + z−1
1 + z2 + z−1

2 )t] =
1

(1− z1t)(1− z−1
1 t)(1− z2t)(1− z−1

2 t)
(3.13)

by using the identity that ln(1− x) =
∑∞

k=0
xk

k
.

4 Methods

4.1 Computation Methods

In general resolving the HS using the monopole formulas is a tedious task. The three
methods used are outlined in the following sections.

4.1.1 Shifting Sums

For rank 1 nodes, the limits of the sums are (−∞,∞). Therefore shifting the indices by
any finite amount keeps the limits the same. Take the case of the HS of the quiver A2

(Fig. 11)

1

(1− t2)2

∞∑
m1=−∞

∞∑
m2=−∞

zm1
1 zm2

2 t|m1−m2|+|m2|. (4.1)

shifting m1 → m1 +m2,

=
1

(1− t2)2

 ∞∑
m′1=−∞

z
m′1
1 t|m′1|

( ∞∑
m2=−∞

(z1z2)m2t|m2|

)
(4.2)

Now the two summations are separated into simple geometric sums which can be found
to be

=
1

(1− t2)2

(
1− t2

(1− z1t)(1− z−1
1 t)

)(
1− t2

(1− z1z2t)(1− z−1
1 z−1

2 t)

)
=

1

(1− z1t)(1− z−1
1 t)(1− z1z2t)(1− z−1

1 z−1
2 t)

(4.3)

However, this method only worked for simple cases; for higher ranks, some limits are
bounded by finite values. This meant that the coupling cannot be removed via shifting
the sums.

4.1.2 Counting Cases

The second method was to explictly count the number of cases for an order of t. Take
the example of a general Ân quiver, shown in Fig. 15. Shifting the sums, the conformal
dimension can be found to be of the form

2∆ =

∣∣∣∣∣
n∑
i=1

mi

∣∣∣∣∣+
n∑
i=1

|mi| (4.4)
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to find the global symmetry, for example, we are interested in the cases where 2∆ = 2.
Note that for this condition, it is required that

∑n
i=1 |mi| ≤ 2. This means that there can

be only two non-zeros of mi = ±1, with the rest being 0. The possible configurations are

2n cases : (±1, 0, ..., 0), (0,±1, 0, ..., 0), ..., (0, ..., 0,±1)

n(n− 1) cases :


(+1,−1, 0, ..., 0), (+1, 0,−1, ..., 0, 0), ..., (+1, 0, ..., 0,−1)

(−1,+1, 0, ..., 0), (0,+1,−1, ..., 0, 0), ..., (0,+1, ..., 0,−1)
...

(−1, 0, ..., 0,+1), (0,−1, 0, ..., 0,+1), ..., (0, ..., 0,−1,+1),

(4.5)

a total of 2n + n(n− 1) cases. The dressing factor’s t2 term is n. Combining the all the
contributions, we find that t2 term is 2n+ n(n− 1) + n = (n+ 1)2− 1 which corresponds
to the dimension of group An = SU(n+ 1) hence the global symmetry of the same group.

4.1.3 Separation of Cases

The third method was to separate out the cases. For example,

2∆ = |m1 −m2|+ |m2 −m3| =


m1 −m3 for m1 ≥ m2 ≥ m3

−m1 + 2m2 −m3 for m2 ≥ m1 ≥ m3

m1 − 2m2 +m3 for m1 ≥ m3 ≥ m2

−m1 +m3 for m3 ≥ m2 ≥ m1

(4.6)

After sorting the different cases, each sum is a geometric series. Accounting for all the
dressing factors, the Hilbert series was calculated by summing over node by node. This
was done computationally using RJK Weyl Utilities code, written in Mathematica by R.
Kalveks. This method proved to be the most applicable, as many quivers were of high
complexity, with many different inequalities to consider.

4.2 Deducing Properties

In general, the characters of each term are not in a familar weight basis. Therefore, it can
be tricky to recognise the characters and therefore the global symmetry of the HS. The
first step was to unrefine the Hilbert series in order to find the dimension of the t2 term.
Its dimension would limit the possible global symmetry groups. Also from the unrefined
rational form, the Coulomb branch could be determined in simple cases such as Cn/Z2.

5 Results and Discussion

5.1 Dynkin Quivers

Below we present the results for Dynkin quivers, which are quivers that have the same
structure as the Dynkin diagrams of the same names. Attempting to balance all nodes
results in one or two minimally imbalanced nodes; we ungauge the quivers at one of the
minimally imbalanced nodes.
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5.1.1 An

The quiver corresponding to the Dynkin diagram An, shown in Fig. 11 is ungauged at
the nth node. To highlight the techniques, its calculation will be shown in more detail
than other examples.

Figure 11

The Hilbert series, using the monopole formula, is

HAn(z, t) =
1

(1− t2)n−1

∞∑
{m}=−∞

zm1
1 zm2

2 ...z
mn−1

n−1 t2∆, (5.1)

where {m} = m1,m2, ...,mn−1, and

2∆ = |m1 −m2|+ · · ·+ |mn−2 −mn−1|+ |mn−1|. (5.2)

Shifting the sum as m1 → m1 + m2, then m2 → m2 + m3, then ..., then mn−2 →
mn−2 + mn−1, we see that the summations become independent of each other. Then the
simple geometric series can be calculated and the Hilbert series can be written as

HAn(z, t) = PE

[(
z1 + z1z2 + z1z2z3 + ...+

n−2∏
i=1

zi +
n−1∏
i=1

zi + c.c.

)
t

]
(5.3)

where c.c. denotes complex conjugate of all the terms inside the bracket.

Via a fugacity map to weight basis y,
z1

z2
...

zn−2

zn−1

 =


1 0 · · · 0 0
2 1 · · · 0 0
...

...
. . .

...
...

(n− 2) (n− 3) · · · 1 0
(n− 1) (n− 2) · · · 2 1

 ∗


y1

y2
...

yn−2

yn−1

 , (5.4)

we find that each term is a character of Sp(n− 1), and

HAn(z, t) =
∞∑
k=0

χ
Sp(n−1)
[k,0,...,0](z) tk, (5.5)

displaying a Sp(n − 1) global symmetry. By unrefining the series, it is clear from Eq.
(5.3) that

HAn,unref (t) =
1

(1− t)2(n−1)
= H

(
C2(n−1)

)
, (5.6)

a flat space.
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5.1.2 Cn

The Cn quiver is minimally imbalanced at the first node, and is shown in Fig. 12.

Figure 12

Explicitly computing the Hilbert Series for C3, C4, C5, we predict

HCn(z, t) =
∞∑
k=0

χ
Sp(n−1)
[2k,0,...,0](z) t2k, (5.7)

again, displaying Sp(n−1) global symmetry. From the unrefined series, it was found that

HCn,unref (t) =
1

2

(
1

(1 + t)2(n−1)
+

1

(1− t)2(n−1)

)
= H

(
C2(n−1)/Z2

)
. (5.8)

5.1.3 F4

Figure 13

The F4 quiver is minimally imbalanced on the leftmost node, as shown in Fig. 13. Ex-
plicitly solving, we find

HF4(z, t) =
∞∑
k=0

χ
Sp(7)
[k,0,0,0,0,0,0](z) tk, (5.9)

HF4,unref (t) = H
(
C14
)
, (5.10)

which again demonstrates symplectic Sp(7) global symmetry, and a flat Coulomb branch.

5.1.4 G2

Figure 14

The G2 quiver (Fig. 14) was solved with the results below:

HG2(z, t) =
∞∑
k=0

χ
Sp(2)
[k,0] (z) tk, (5.11)

HG2,unref (t) = H
(
C4
)
, (5.12)

displaying a symplectic Sp(2) global symmetry, and a flat Coulomb branch.
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5.1.5 Comments

From all the results, found analytically (forAn) and by explicit computations (for Cn, F4, G2),
we find that the global symmetries are symplectic, with a flat Coulomb branch, except for
the case of Cn, which displayed C2(n−1)/Z2 orbifolds. Note that for all nodes ungauged
on long nodes are flat spaces but Cn, ungauged at a short node, has a Z2 action on the
C2(n−1) space.

5.2 Affine Dynkin Quivers

An affine Dynkin quiver connects a new node to the minimally imbalanced nodes of the
dynkin quiver to make all nodes balanced. It is conventionally ungauged at the newly
added node, and is notated with a hat (ˆ) on top of the normal labeling.

5.2.1 Ân

Figure 15

The HS of the quiver, Ân (shown in Fig 15), given by the monopole formula, is

HÂn
(z, t) =

1

(1− t2)n

∞∑
{m}=−∞

zm1
1 zm2

2 ...zmn
n t2∆, (5.13)

where {m} = m1,m2, ...,mn, and

2∆ = |m1|+ |m1 −m2|+ · · ·+ |mn−1 −mn|+ |mn|. (5.14)

Shifting the sums asm1 → m1+m2, thenm2 → m2+m3, then ..., thenmn−1 → mn−1+mn,
we find that the form of the conformal dimension is as the case shown in Sec. 4.1.2, which
shows that the global symmetry is An = SU(n+ 1).

As for the general HS, from the first few cases it is clear that

HÂn
(z, t) =

∞∑
k=0

χAn

[k,0,...,0,k](z) t2k, (5.15)

agreeing with the analytic prediction of the global symmetry. The HS corresponds to

HÂn
(t) = H

(
minAn

)
(5.16)

where minAn denotes ‘the closure of the minimal nilpotent orbit of An’. Closures of
nilpotent orbits of compact Lie groups are another kind of space called varieties, different
from manifolds and orbifolds. They are in general rich in structure.

22



5.2.2 Ĉn

Figure 16

Note that the quivers Cn+1 = Ĉn if ungauged at leftmost node; this is because a square
(flavour) node contributes no charges, so the doubly-weighted arrow does not alter the
HS. The complete HS, same as HCn+1 , is

HĈn,unref
(t) = H

(
C2n/Z2

)
= H

(
minCn

)
. (5.17)

The global symmetry can be found analytically. consider the HS given by the monopole
formula:

HĈn
(z, t) =

1

(1− t2)n

∞∑
{m}=−∞

zm1
1 zm2

2 ...zmn
n t2∆, (5.18)

where {m} = m1,m2, ...,mn, and

2∆ = |m1|+ |m1 −m2|+ ...+ |mn−2 −mn−1|+ |mn−1 − 2mn|. (5.19)

Shifting as m2 → m2 + m1, then m3 → m3 + m2 + m1, then ..., then mn−1 →
∑n−1

i=1 mi,
we find that the conformal dimension becomes

2∆ =

∣∣∣∣∣2mn −
n−1∑
i=1

mi

∣∣∣∣∣+
n−1∑
i=1

|mi|. (5.20)

To find the global symmetry, we seek the solutions for 2∆ = 2. Then it is required
that

∑n−1
i=1 |mi| ≤ 2 as before. This means that there can be only two non-zeros of

mi≤n−1 = ±1, with the rest being 0, while mn can be −1, 0,+1. We consider the case
where n ≥ 3.

For mn = 0, the conformal dimension (Eq. (5.20)) is as same as one for Ân−1; therefore
there are 2(n− 1) + (n− 1)(n− 2) = n(n− 1) cases.

For mn = +1, the comformal dimension is

2∆ =

∣∣∣∣∣2−
n−1∑
i=1

mi

∣∣∣∣∣+
n−1∑
i=1

|mi|. (5.21)

which there are, for n− 1 entries,(
n− 1

2

)
cases : (1, 1, ..., 0), (1, 0, 1, ..., 0), ..., (0, ..., 1, 1)

(n− 1) cases : (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)

(n− 1) cases : (2, 0, ..., 0), (0, 2, 0, ..., 0), ..., (0, ..., 0, 2)

1 case : (0, 0, ..., 0)

(5.22)
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Summing to n(n+ 1)/2 cases.

For mn = −1, there are same number of cases as mn = +1.

So, in total, the contribution from the conformal dimensions is n(n− 1) + 2×n(n+ 1)/2.
Combining with the n contribution from the dressing factor, the unrefined t2 term is
n(2n+ 1), the dimension of the group Cn = Sp(n), corresponding to the global symmetry
of Cn. This agrees with the predicted series.

5.2.3 F̂4

Figure 17

The quiver for F̂4 is shown in Fig. 17. The HS was computed explicitly, and was found
to be

HF̂4
(z, t) =

∞∑
k=0

χF4

[k,0,0,0](z) t2k, (5.23)

displaying an F4 global symmetry. The Coulomb branch is:

HF̂4,unref
(t) = H

(
minF4

)
, (5.24)

again not a flat space.

5.2.4 Ĝ2

Figure 18

The quiver for Ĝ2 is shown in Fig. 18. Computed explicitly, the HS is

HĜ2
(z, t) =

∞∑
k=0

χG2

[0,k](z) t2k, (5.25)

displaying a G2 global symmetry. The Coulomb branch is

HĜ2
(t) = H

(
minG2

)
(5.26)

5.2.5 Comments

From the examples computed, the affine quivers, ungauged at the newly added (or ‘next
to minimally imbalanced’) node, displayed a global symmetry of groups of their respective
Dynkin diagrams. The Coulomb branch of the moduli spaces were varieties called closures
of minimal nilpotent orbits (of the same groups). This agrees with the claims made by
Hanany & Kalveks [8].
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5.3 Ungauging Location

Noting that the short-node ungauged Cn led to a Z2 action, we now explore the conse-
quence of changing the ungauged location on the Coulomb branch.

5.3.1 An, Ân

For An, given any ungauged location 1 < j < n, the HS can be decomposed into a product
of HS of Aj−1 and An−j, since the two sides are decoupled. This is shown in Fig. 19. The
HS is then H(C2(j−1)) × H(C2(n−j)) = H(C2(n−1)); invariant under change of ungauging
location.

As for Ân, changing the ungauging location does not change the structure of the quiver;
therefore its HS is invariant under change of ungauging location.

Regarding topological fugacities, they can always be mapped into the desired basis; there-
fore they are unimportant in the discussion of Coulomb branch of the moduli space.

Figure 19: The HS of An ungauged at jth node can be decomposed into a product of two
smaller Aj−1 and An−j quivers.

5.3.2 Cn

Figure 20: The different cases of ungauging a Cn quiver

Changing the ungauging location for Cn, shown in Fig. 20, apart from the first case and
last two cases, the quiver can again be decomposed into a product of Aj−1 and Cn−j for
ungauging location 1 < j < n− 1; so

H
C

(j)
n

(t) = H
(
C2(j−1)

)
×
(
C2(n−j)

Z2

)
= H

(
C2(j−1) × C2(n−j)

Z2

)
. (5.27)
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For the second last case, it was analytically (by decomposition) shown that

H
C

(n−1)
n

(t) = H(C2(n−2))×H(C2/Z2) = H(C2(n−2) × C2/Z2), (5.28)

which agrees with Eq. (5.27).

The last case has the same HS as An, so

H
C

(n)
n

(t) = H(C2(n−1)). (5.29)

which also happens to agree with Eq. (5.27). We can see that for a Cn quiver, there is a
Z2 action on that moves by C2 as the ungauged node moves. Also, there is no action on
the last (long) node.

5.3.3 F4, G2

For the F4 quiver, the HS’s were calculated explicitly, apart from one of the nodes:

HF4,a)(t) = H
(
C14
)

(5.30)

HF4,b)(t) = H
(
C14
)

(5.31)

HF4,c)(t) : no results yet (5.32)

HF4,d)(t) = H
(
C10 × C4/Z2

)
(5.33)

where a), b), c), d) are as Fig. 21. For long ungauged nodes, we see a flat space of C14,
and for the short node, with Z2 action.

Figure 21: a) ∼ d): different ungauging schemes for F4 quiver; e) ∼ f): ungauging
schemes for G2 quiver. Case c) was unable to be calculated due to a technicality with the
code.

For G2, we see a similar pattern, except the action is Z3, which corresponds to the triply
weighted edge of G2.

HG2,e)(t) = H
(
C4
)

(5.34)

HG2,f)(t) = H
(
C2 × C2/Z3

)
(5.35)

where e), f) are as Fig. 21.
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5.3.4 F̂4,Ĝ2

The Coulomb branch of F̂4,Ĝ2 are much more complex. We consult the result of Brylinski
& Kostant to deduce that the Coulomb branch of the short nodes are Zn action on some
parts of the varietes [1].

Figure 22: a) ∼ e): different ungauging schemes for F4 quiver; f) ∼ h): ungauging
schemes for G2 quiver. Case d) was unable to be calculated due to a technicality with the
code.

As Fig. 22, the results are:

HF̂4,a,b,c)
(t) = H

(
minF4

)
(5.36)

HF̂4,d)(t) : no results yet (5.37)

HF̂4,e)
(t) = H

(
n.minB4

)
= H

(
minF4/Z2

)
(5.38)

where n.minB4 refers to closure of the next to minimal nilpotent orbits of B4, which
corresponds to a Z2 action on some parts of minF4 .

HĜ2,f,g)
(t) = H

(
minG2

)
(5.39)

HĜ2,h)(t) = H (maxA2) = H
(
minG2/Z3

)
(5.40)

where maxA2 refers to the closure of maximal nilpotent orbit of A2, which corresponds to
minG2 .

5.3.5 Comments

From the examples, we see a clear pattern. We state the Ungauging Hypothesis : for long
nodes and simply laced quivers, the ungauging location does not affect the space of the
HS. For short nodes, moving the ungauged node shifts the Zn action on some parts of the
space where n is the weight of the edges.

6 Conclusion and Outlook
The aim of the project was to study the Coulomb branch of moduli spaces of N = 4, d =
2 + 1 gauge theories, which can be encoded in pictures called quiver diagrams. Moduli
space are of interest as they describe the abstract space of vacua. Along the way, intuitions
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of representation theory, Hilbert series, and understanding of the monopole formula were
developed.

Using a combination of analytic and computational methods, it was found that minimally
imbalanced An, Cn, F4, G2 Dynkin quivers, ungauged at a minimally imbalanced node,
displayed symplectic (Sp) global symmetries, and had Coulomb branch of flat spaces Cn

with action of Z2 in the case of Cn.

Affine Dynkin quivers, which attaches an additional node to the minimally imbalanced
nodes to make the quiver balanced, were ungauged at the newly added node. It was
found that they display global symmetries of Lie groups of the same Dynkin names,
and that their Coulomb branches are varieties called closures of minimal nilpotent orbits
of the same Lie groups. This agrees with the claims made by Hanany and Kalveks
[8]. Although due to the complexity of the monopole formula, the Hilbert series were
calculated computationally, the global symmetries for Ân, Ĉn were shown analytically by
counting cases.

Additionally, we explored the implications of changing the location of ungauged node.
Arguments in the cases of An, Ân, Cn, and explicit calculations for F4, G2, F̂4, Ĝ2, led to
the Ungauging Hypothesis: ungauging location for long nodes or simply laced quivers
should not have an effect on the Coulomb branch of the moduli space, while changing the
ungauging location for short nodes should have a shifting action of Zn on the Coulomb
branch where n corresponded to the weight of the weighted-directed edge.

However, the Hilbert series for one short node ungauging location for F4, F̂4 was not
able to be resolved due to complications with the code. Furthermore, there are other
Dynkin quivers Bn, Dn, E6,7,8 and their affine counterparts to be explored. To further
test the hypothesis, the Hilbert series for these examples should be calculated as well.
Other directions of further research could be into developing the ‘counting cases’ method
to determine global symmetries, perhaps by including the topological fugacities into the
calculation.
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