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Abstract
In underdetermined inverse problems such as ray-tracing tomography, finite-parametrisation of the
model and regularisation of the misfit functional are often used to force a unique solution. However,
these measures are unsatisfactory because they are arbitrarily chosen. An alternative method is to use
gradient-based optimisation to find a local minimum of the misfit, where the first order gradient of the
misfit is required for the scheme and the second order can be used to quantify the constraints on the
obtained solution or to potentially improve the scheme. The adjoint method is an effective way of cal-
culating these gradients. We show that, in order to obtain a sensible solution through this scheme, we
must work in an appropriate Sobolev space, the space of square-integrable functions with additional
continuity constraints. We apply these ideas to the metric tomographic problem, the problem of finding
an unknown metric on a manifold given a finite number of geodesics, which is an analogous problem
to ray-tracing tomography of surface waves. We numerically implement this method for the linearised
version of the problem on a 2-dimensional torus. Additionally, we present the first and second adjoints
for the general problem, which can be used to calculate the first and second order gradients of the misfit
function.
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1 Introduction
Tomography, imaging a medium through penetrating waves or signals, is an important method in many
disciplines. Particularly in seismology, it is responsible for disproving the two-layered convection hy-
pothesis by revealing that slabs sink into the lower mantle [1], and for discovering ‘weather patterns’
due to convection and magnetic activity inside the sun [2]. Tomography depends on the principle that
observations derived from a medium should rely on the internal structure and therefore should contain
information about it. If we consider the forward problem to be determining what observations would be
made given some internal structure, then tomography is the inverse problem of determining the internal
structure given some observations. This process is also often called ‘inversion’.

In this article, we focus on the metric tomographic problem, the problem of determining an unknown metric
tensor of a manifold given a finite set of end points and lengths of geodesics. This sketched in Fig. 1.
This problem is of interest as it turns out that it is analogous to delay-time anisotropic ray-tomography
from surface waves on a sphere [4].

Figure 1: A sketch of the metric tomography problem.
Patches of color indicate areas of different velocities,
lines indicate geodesics.

Inversions are most often done through minimising the least-squares misfit Ĵ between observation (the
data d) and synthesized observations a(m), given some internal structure (the model m),

Ĵ [m] =
1

2
〈a(m)− d, a(m)− d〉 ,

where 〈·, ·〉 denotes an inner product. However, most inverse problems only have a few observations,
whereas internal structure, often described as a field valued at every point in space, is an infinite-
dimensional parameter. This makes the problem severely underdetermined. The two conventional
ways of tackling these problems, especially in ray tomography, are to a) finite-parametrise the model,
expanding it into basis functions such that we fit to only a finite number of parameters, and b) regularise
the misfit, adding a term 〈Bm,m〉 to the misfit, where B is a positive-definite matrix. These measures
enforce a unique solution to the inverse problem [13]. However, this method has been shown to affect
the resulting solution (eg. [3]), and is unsatisfactory because we arbitrarily assume certain features of
the solution, without any physical justifications.

An alternative method is to use gradient-based optimisation schemes, where, roughly, we update some
initial model guess in the negative direction of the gradient until an optimised model that locally min-
imises the misfit is found. Only the first order gradient of the misfit is used for most schemes, but second
order gradients can potentially improve the scheme or quantify the constraint of the optimal model [9].
The adjoint method is an effective way of calculating these gradients. To implement these schemes, we
must work in a Hilbert space, such that the misfit perturbation due to the model perturbation can be
written as the inner product of some kernel and the model perturbation. Then, appropriate amounts of
the kernel can be added to/subtracted from the model.

In this article, we propose that in order to find a sensible optimised model that is pointwise convergent
and is differentiable up to a desired order, we must work in Sobolev spaces, rather than the conventional
square-integrable function space (L2). We numerically implement the scheme for a linearised version
of the metric tomographic problem on a 2-dimensional torus, and highlight that as resolution increases,
the kernels and the optimised models converge to a finite value in the appropriate Sobolev space, but
diverges in L2 space. Knowing that the metric tomographic problem can be posed in a sensible function
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space and therefore be solved in gradient-based optimisation schemes, we present novel calculations
of the first and second adjoint problems for the general, non-linear metric tomographic problem, and
discuss how it can be implemented in gradient-based optimisation schemes.

The article is organised as follows. Sec. 2 motivates the metric tomography problem from surface wave
equations. Sec. 3 discusses inverse problems in general, the adjoint method as a means of calculating
gradients effectively, and argue why Sobolev spaces are appropriate spaces to pose certain inverse prob-
lems. Then, Sec. 4 will formulate and numerically implement a linearised version of the problem on a
2-dimensional torus. In Sec. 5, we present the calculation results of the first and second order adjoints.

2 The Forward Problem
2.1 Wave Propagation in Manifolds
On a Riemannian manifoldM, the wave equation is

∂2u

∂τ2
+ ∆u = 0,

where u : M× R → R is the wavefield, a function of points x ∈ M and time τ , and the Laplacian
operator ∆ := −∇µ∇µ.

In coordinate notation, this can be written as

∂2u

∂τ2
− 1√

|g|
∂

∂xµ

(√
|g|gµν ∂u

∂xν

)
= 0,

where gµν is the metric tensor defined on the manifold M, and |g| is its determinant, and Einstein
summation convention is used for Greek indices throughout the article.

By analogy to ray-tracing tomography on an elastic body (see appendix A.1), for non-homogeneous
metrics, we approximate the solution to first order for each angular frequency ω as

u(x, τ) ≈ a(x)eiω(τ−T (x)).

Substituting it into the wave equation, to leading order,

gµνpµpν = 1,

where we defined pµ := ∂T (x)
∂xµ . Since this quantity is conserved, we employ the method of characteris-

tics, defining the Hamiltonian as

H(x, p) :=
1

2
gµν(x)pµpν

with the Equation of Motion (EoM)

dxµ

dt
=
∂H

∂pµ
;

dpµ
dt

= − ∂H
∂xµ

,

where t is some generating parameter.

In the next subsection, we will see that these expressions are the same as the EoM for a geodesic on a
manifold. Therefore in the remainder of the article, we study the analogous geodesic problem with the
identification of geodesic lengths with travel time data, and the sets of point on the manifold as locations
of seismometers and sources.
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2.2 The Geodesic Forward Problem
On a Riemannian manifoldM, the length l of a curve x(t) with parameter t ∈ [0, 1] is given by

l =

∫ 1

0

√
gµν(x)ẋµẋν dt,

where a dot represents differentiation under the parameter t, ˙ := d
dt . A geodesic is defined as a curve

such that its length is extremised. Since the square root is a monotonic function, x(t) that extremises l
also extremises the action S, defined as

S =

∫ 1

0

gµν(x)ẋµẋνdt =

∫ 1

0

L[x, ẋ] dt,

where L[x, ẋ] is the Lagrangian. We use the variational principle to minimise the action, yielding the
Euler-Lagrangian equation,

d

dt

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= gµρẍ

ρ − 1

2
(∂µgρσ) ẋρẋσ = 0.

This EoM can be phrased in the Hamiltonian formulation. Defining canonical momenta p such that

pµ :=
∂L

∂ẋµ
= gµν(x)ẋν ,

and the Hamiltonian H such that
H[x, p] := pµẋ

µ − L,

we find that
H[x, p] = gµν(x)pµpν .

By varying the Lagrangian and Hamiltonian with respect to xµ, pµ, the equations of motion can be
phrased as [6]

dẋµ

dt
=
∂H

∂pµ
and

dṗµ
dt

= − ∂H
∂xµ

,

identical in form with the ray-tracing problem. Furthermore, it can be shown that the Hamiltonian H
is conserved along the geodesic. Consider imposing the starting condition of the geodesic, x0,p0. An
interesting consequence of the choice of parametrisation t to be from 0 to 1 is that the length of the
geodesic is equal to the norm of the starting momenta, since

l =

∫ 1

0

√
gµν(x)ẋµẋν dt =

∫ 1

0

√
gµν(x)pµpν dt =

∫ 1

0

√
2H dt.

Since H is conserved along the geodesic path, we set it to its starting value:

l =
√

2H =
√
〈g−1(x0)p(0),p(0)〉 = ‖p0‖T ∗M , (2.1)

where [g(x)]µν := gµν(x), [g−1(x)]µν := gµν(x), [p]µ = pµ.

We cast the EoM in even more concise fashion using a 2n-dimensional vector z, as

dz

dt
= J

∂H

∂z
(z), H = 〈g−1(x)p,p〉 = pTg−1(x)p,

where

J :=

[
0n 1n
−1n 0n

]
, z(t) :=

[
x(t)
p(t)

]
.
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Then, provided some initial condition

z(0) =

[
x(0)
p(0)

]
=

[
x0

p0

]
,

and the metric g(x), the forward problem is to find the forward solution x(t). This can be readily
implemented using a numerical ODE solver.

This statement of the forward problem is known as the strong form. When using a variational method, it
is sometimes useful to pose the problem in the weak form, constructed as follows: we take the Euclidean
inner product of the EoM with some test function y(t), then integrate it over the domain of z(t). The
solution that holds for any test function y is known as the weak solution, and the problem can be posed
as: ∫ 1

0

〈
dz

dt
(t)− J

∂H

∂z
(z(t)) ,y(t)

〉
dt = 0. (2.2)

We take the analogous steps for the initial value condition for test value y0 to find

〈z(0)− z0,y0〉 = 0. (2.3)

3 Inverse Problems
Given the forward problem, we can pose the inverse problem as follows.

Consider a geodesically complete manifoldM equipped with an unknown metric tensor g(x), but that
we have been given a finite number of collections of two points on the manifold and their geodesic

distance between them,
{(
x
(i)
0 ,x

(i)
1 , l(i)

)}Ngeo

i=1
. Then, what inferences can we make about the metric,

g(x)?

3.1 Introduction to Inverse Problems
We first discuss a general inverse problem. For simplicity, we first consider a deterministic problem
without data errors.

We can think of a forward problem as follows. Assuming that a physical theory (which requires addi-
tional model parameters), describes a physical system, given an input model parameter m ∈M we can
output synthesized data d ∈ D, using some forward mapping operator a : M→ D, as

a(m) = d,

where M is the model space and D is the data space. Then, the inverse problem is to make quantitative
inferences about the model parameters m, given input data d.

In the case of the article, the model parameter is the metric, g(x). This is a multi-component, contin-
uously varying function, member of an infinite-dimensional function space. Meanwhile, the data, the
lengths of the geodesics, {l(i)}i, are a set of numbers, member of a finite-dimensional space. Therefore,
even if there exists a solution, it cannot be unique. This is a feature of most inverse problems - they are
severely underdetermined.

To attempt to solve the inverse problem, we define a misfit Ĵ , such as the least-squares misfit, as follows:

Ĵ [m] :=
1

2
〈a(m)− d, a(m)− d〉 ,

where 〈·, ·〉 is some appropriate inner product, here on the data space. Then, we try to find the model
parameter m that minimises the misfit. Defining the functional derivative of J with respect to m, DmĴ ,
through

Ĵ [m+ δm]− Ĵ [m] ≡
〈
DmĴ , δm

〉
+O(δm2), (3.1)
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in the vicinity of an optimising parameter mmin such that DmĴ(mmin) = 0, the misfit can be linearised
as

Ĵ [mmin +m] = Ĵ [mmin] +
1

2

〈
〈Dma(mmin),m〉 − d, 〈Dma(mmin),m〉 − d

〉
+O(m3). (3.2)

Note that we assumed that both M, D are Hilbert spaces with appropriate inner products.

Assuming that the operator Amin : m 7→ 〈Dma(mmin),m〉, is a continuous, linear functional, we now
consider the linear problem of the continuous, linear forward mapping operator A ∈ hom(M,D), such
that

Am = d.

Such linearisation is often appropriate for the context of seismic tomography, where the variation from
the known model m0 (such as the spherically symmetric model for the case of the solid earth) is small,
eg. the velocity variation from the spherical model is only ±2% [12].

We define the null space, or alternatively the kernel of a linear operator A, ker(A), as

ker(A) := {mnull ∈M | Amnull = 0} . (3.3)

This is the subspace of M such that adding components of the subspace to the model does not affect the
synthesized data at all, and therefore the misfit also.

Suppose we found a solution m such that Am = d. Then, for any mnull ∈ ker(A), (m + mnull) is also a
solution as A(m + mnull) = Am + Amnull = Am = d. Therefore, assuming that a solution exists, it is
only unique if the null space is trivial, i.e. if ker(A) = {0}. For dim(M) > dim(D), such as the geodesic
problem, the null space is not trivial, which means that there are an infinite number of solutions.

We define the adjoint operator of A, A† ∈ hom(D,M), that maps from the data space to the model space
such that

〈Am, d〉D ≡
〈
m,A†d

〉
M

(3.4)

for all m ∈M, d ∈ D.

We define the image of an operator A† ∈ hom(D,M), im(A†), as

im(A†) :=
{
A†d ∈M | d ∈ D

}
. (3.5)

This is the the subspace of M that A† can map to, given any element d ∈ D.

It can be shown that the model space M can be split into two subspaces as [8]:

M = ker(A)⊕ im(A†), (3.6)

where the two components are orthogonal to each other.

3.2 Gradient Based Optimisation
As discussed in the introduction, the challenge of severely-underdertermined inverse problems is usu-
ally tackled by finite parametrisation and regularisation, somewhat unsatisfactory measures. An alter-
native method to find a solution is through the method of gradient-based optimisation. The crudest
method is the steepest-descent method (SD). Schematically, we: a) calculate the gradient of the misfit
with respect to the model,DmĴ at some initial guessmstart, b) update the guess in the direction negative
to gradient m 7→ m′ = m − αDmĴ(m), where scalar α > 0 is chosen through a line search such that it
minimises the misfit in that direction, and c) repeat until we find mmin such that DmĴ(mmin) = 0, to
some tolerance. We can understand mmin as the local minimum of the misfit.

Other gradient-based optimisation schemes choose a different descent direction, and may converge
faster than SD. The non-linear conjugate gradient method (NLCG) uses information about the previ-
ous gradient [14]. The limited-memory BFGS method (LBFGS) is a pseudo-Newton method that uses
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an estimate of the second order gradient by storing some number of the previous calculated gradients
[15]. Both of these methods are currently used in seismic tomography. The full Newton method requires
the full information of the second order gradient of the misfit (in the Hessian), and has the potential to
reduce the number of iterations needed [9]. These methods are sketched in Fig. 2.

Figure 2: A sketch of gradient based optimisation. The
steepest descent method, (black), may be superceded by
methods that estimate the curvature of the misfit (light
blue).

If the optimising model is found, the second order gradients can be used to constrain the solution in
certain directions. At the minimum, we can expand the misfit around the minima as (3.2), to find

DmĴ |mmin = A†min (Aminm− d) +O(m3), (3.7)

to approximate the Hessian
DmDmĴ |mmin = A†minAmin +O(m3). (3.8)

We now use a result from linear algebra, singular value decomposition: any real matrix A can be de-
composed into A = L†ΛR, where Λ = diag(λ1, ...), and L,R are orthogonal matrices, and (†) denote the
hermitian conjugate here. For li: the ith column of L, ri: the ith column of R, the following identities
hold:

A†li = λiri, (3.9)

Ari = λili. (3.10)

Since L,R are orthogonal matrices, the set {li}i an {ri}i are orthonormal sets of vectors. They are eigen-
vectors of AA† and A†A respectively:

AA†li = λ2i li, (3.11)

A†Ari = λ2i ri. (3.12)

This result generalises to continuous linear operators, with the analogue of Hermitian conjugate being
the adjoint, with the same notation (†). Importantly, AminA

†
min is just a dim(D) × dim(D) matrix acting

on the data space, so its eigenvalues {λ2i }i and eigenvectors {li}i can be found easily, using algorithms
such as the Jacobi Algorithm [10]. From this, the eigendirections for A†minAmin can be found. From
(3.8), A†minAmin is the first-order term of the second order functional derivative of Ĵ [mmin], therefore the
eigenvalues {λ2i }i describe the local curvature/sensitivity of the misfit Ĵ in model directions {ri}i. This
is sketched in Fig. 3.

6



Figure 3: Sketch of the misfit around its lo-
cal minima. The eigenvalues describe the sen-
sitivity of the misfit along model eigendirec-
tions, whose reciprocal is proportional to the
error along that direction.

Around mmin, a change in model parameter by αiri (αi is some constant) will result in change in syn-
thesized data asAαiri = λiαili. Given some errors in the data, d± ε, where we assume that ε has 0 mean
and is Gaussian distributed with covariance matrix C = E[ε ⊗ ε], where E[·] denotes the expectation
value and ⊗ denotes a tensor product. Then, it can be shown that E[‖ε‖] =

√
trC [5].

Therefore, we can estimate the error in the model direction ri by setting the synthesized data perturba-
tion from model direction ri equal to the error magnitude of the data, as

‖Aαiri‖ = ‖λiαili‖ = λi|αi| = E[‖ε‖] =
√

trC, (3.13)

thereby obtaining the estimate of the model error,

|αi| =
√

trC

λi
. (3.14)

Consider the linear problem with misfit Ĵ = 1
2 〈Am− d,Am− d〉. Following the prescription (3.1), first

order gradient is exactly
DmĴ(m) = A†(Am− d). (3.15)

Since the optimisation algorithm will update the model by adding some component of the gradient of
the misfit, we can see from (3.15) that it will only add components in im(A†), as illustrated in Fig. 4.

Figure 4: Left: sketch of linear gradient-based optimisation; the only components of im(A†) are added during the
optimisation process. Right: non-linear gradient-based optimisation, which may not give a solution that globally
minimises the misfit.

For a linear problem, there is a unique projection of the global minimum to im(A†) [13]. Therefore model
error estimate (3.14) is accurate in that it effectively constrains the model in the im(A†) subspace of the
model space M. For a non-linear problem however, there is no guarantee that the model solution is
at a global minimum, as there may be multiple points where the gradient vanishes. One may wish to
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explore the model space to find a global minima. However, in the case in which the model space is
far too large (or infinte) to explore the full model space, this is impractical or impossible, and is one of
the open problems in non-linear inverse problems - how do we find the global minima of an infinite-
dimensional model space? Therefore (3.14) only constrains the model around the local minimum. These
ideas are illustrated in Fig. 4.

3.3 Adjoint Methods
The adjoint method can be used to effectively calculate gradient of the misfit with respect to model
m, such that each gradient calculation only requires one solution to the forward problem and another
closely related forward problem called the adjoint problem. We describe the method schematically here.

Consider an objective functional J [m,u], dependent on u, the forward variables (ex. path of the geodesic
x(t)), and m the model parameters. Since the forward variables are ultimately dependent on the model
parameters, we define the reduced objective functional Ĵ [m] = J [m,u(m)]. We look to find the deriva-
tives of Ĵ .

If the dependence of u on m is enforced by a forward problem b(u,m) = 0 (such as the EoM), instead of
calculating DmĴ directly, we can construct a Lagrangian

L[u, u†,m] = J(m,u) + 〈b(u,m), u†〉.

We make use of the Lagrangian Multiplier Theorem (LMT), which states that

DmĴ [m] = DmL[u, u†,m] if u, u† such that DuL = 0, Du†L = 0.

By inspection, from the condition Du†L = 0, we retrieve the solution to the weak form of the forward
problem. Meanwhile the condition DuL = 0 creates another forward problem, called the adjoint prob-
lem.

The adjoint method can be used to evaluate the the second order gradient of the reduced objective
functional Ĵ along some fixed model perturbation direction m]. We define another objective functional

J1(m,u, u†) =
〈
DmL,m

]
〉
.

To enforce the forward equations and adjoint equations we define

L1(m,u, u†, u], u†]) := J1(m,u, u†) +
〈
Du, L, u

]
〉

+
〈
D†u, L, u

†]〉 ,
where we introduced the second-order adjoint variables u], u†]. We note that the gradient of the second
order reduced functional can be used to evaluate to the second order gradient of the original reduced
objective functional Ĵ along direction m]:

DmĴ1 =
〈
DmDmĴ ,m

]
〉
.

We can find this quantity again by using LMT:

DmĴ1 = DmL1 if DuL1 = Du†L1 = Du]L1 = Du†]L1 = 0.
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3.4 Derivation: The Geodesic Shooting Problem

Figure 5: A sketch of the geodesic shooting problem,
where we vary the initial momentum or ‘shooting pa-
rameter’ of the geodesic until we find one that reaches
the desired point.

To illustrate these concepts, we consider the geodesic shooting problem, where, on a manifold with a
known metric g(x), we fix the start and end points of the geodesic, x0, x1, and find p0 such that the
geodesic connects x0 to x1 in unit parameter time t1 − t0 = 1. This is sketched in Fig. 5.

We cast this as an optimisation problem. We define the misfit

J [z] =
1

2

〈
πxz(1)− x1,πxz(1)− x1

〉
,

where we utilised the projection matrix to x-coordinates,

πx =
[
1n 0n

]
.

To impose EoM (2.2) and initial value condition (2.3) in their weak form, we write down the Lagrangian

L[z,y,y0,p0] =
1

2

〈
πxz(1)− x1,πxz(1)− x1

〉
+

∫ 1

0

〈
y,
dz

dt
− J

∂H

∂z
(z)

〉
dt+

〈
y0, z(0)− z0

〉
, (3.16)

where we introduced test function and value y(t) and y0. We define the reduced objective functional
Ĵ [p0] = J [z(p0)], where z(t) adheres to the EoM and initial condition. From LMT,

Dp0
Ĵ [p0] = Dp0

L[z,y,p0,y0],

if
DzL = 0, DyL = 0, Dy0

L = 0. (3.17)

By inspection of (3.16), 〈
DyL, δy

〉
=

∫ 1

0

〈
dz

dt
− J

∂H

∂z
(z), δy

〉
dt, (3.18)〈

Dy0
L, δz

〉
=

〈
z(0)− z0, δy0

〉
. (3.19)

These must vanish for all δy and δy0, so the left hand side of the Euclidean inner prouct must vanish: we
retrieve the initial value constraint and EoM. We can similarly vary (3.16) with respect to z, integrating
by parts to get the boundary conditions, using the adjoint x-projection matrix π∗x = [1n 0n]T , to find〈
DzL, δz

〉
=

〈
y0−y(0), δz(0)

〉
+

〈
π∗x(πxz(1)−x1)+y(1), δz(1)

〉
−
∫ 1

0

〈
dy

dt
− ∂2H

∂z∂z
Jy, δz

〉
, (3.20)

9



Which must also vanish for all δz by (3.17). This gives the adjoint EoM, initial and terminal value
constraints. Finally, 〈

Dp0
L, δp0

〉
=

〈
− πpy0, δp0

〉
, (3.21)

where the projection matrix to the p-coordinates is

πp =
[
0n 1n

]
,

which, substituting the other variables, will give us the gradient of the misfit Ĵ . The optimisation algo-
rithm then would follow the steps as follows.

1. Choose some value of p0.

2. For this value of p0, solve the forward problem (3.18) to find z(t), and therefore z(1) also.

3. Solve the adjoint problem (3.20) (now with the terminal value y(1) known) to find y(t) and there-
fore y(0) also, and therefore y0 = y(0) can be found.

4. Finally, from (3.21) and LMT, Dp0
L = Dp0

Ĵ can be determined.

5. Update p0 in the negative direction of the gradient using some scheme; repeat steps 1-4 until misfit
is minimised, i.e. Dp0

L = Dp0
Ĵ = 0.

However, we note that the adjoint problem is a terminal value problem rather than an initial value
problem. To turn it into an initial value problem, we define the adjoint variable z† such that

y(t) =: z†(1− t) = (Pz†)(t),

where
P : f(t) 7→ f(1− t) (3.22)

is the time reversal operator. Note that (†) does not refer to the Hermitian conjugate; it is just the adjoint
label. The adjoint problem then becomes an initial value problem, with

〈DzL, δz〉 =

〈
z†0 − z†(1), δz(0)

〉
+

〈
π∗x(πxz(1)− x1) + z†(0), δz(1)

〉
(3.23)

+

∫ 1

0

〈
dz†

dt
+

{
P ∂2H

∂z∂z
(z(t))JP

}
z†,Pδz

〉
, (3.24)

where we used the anticommutation relation { ∂∂t ,P} = 0, and the relation
∫ 1

0
〈·, ·〉dt =

∫ 1

0
〈P·,P·〉dt. We

also relabel y0 7→ z†0. Then, order in which the variables are specified is:

p0 → z → z† → z†0 → Dp0
Ĵ .

3.5 Sobolev Spaces
To implement a gradient-based optimisation where model space is a function space, we must work
in an inner product space such that the terms 〈DmL, δm〉 can be written as an inner product of the
perturbation with some kernelR, 〈DmL, δm〉 = (R, δm). Then we can add components of the functional
gradients to the prior model, m 7→ m+ αR. Some of the necessary conditions are:

1. This space must be a Hilbert space (the space must be equipped with an inner product).

2. We require this space to have the properties that the physical theory requires, such as pointwise
convergence, and some level of differentiability. However, we do not want to impose other prop-
erties if possible.
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3. The linear functional δm 7→ 〈DmL, δm〉must be contained in the dual of this space.

Sobolev spaces can fulfill these three requirements. We discuss these ideas for a n-dimensional torus
Tn of coordinate length 2π, and numerically implement the scheme for the linearised problem of torus
dimension n = 2. However, the results that follows, namely Sobolev Embedding Theorem and Riesz
Representation Theorem, can be extended to other manifolds [16].

3.5.1 Fourier Series

The set of square integrable functions, L2(Tn), is a function space such that

L2(Tn) :=

{
f : Tn 7→ C

∣∣∣∣ ∫
Tn
|f(θ)|2dnθ <∞

}
,

equipped with an inner product (· , ·)L2 , such that ∀ f, g ∈ L2(Tn),

(f, g)L2 :=

∫
Tn
f(θ)g(θ)

dnθ

(2π)n
,

where the line over a symbol denotes complex conjugation. As it has an inner product defined, it is a
Hilbert space. Define the Fourier transform operator F as

F : f 7→ f̃ such that f̃k =

∫
Tn
f(θ)e−i〈k,θ〉

dnθ

(2π)n
.

It can be shown that F : L2(Tn) → `2(Zn), where `2(Zn) is a sequence space on the n-dimensional
integers such that

l2(Tn) :=

{
u : Zn → C

∣∣∣∣ ∑
k∈Zn

|uk|2 <∞

}
,

equipped with an inner product (· , ·)l2 such that ∀ u, v ∈ `2(Zn),

(u, v)l2 :=
∑
k∈Zn

ukvk. (3.25)

Similarly, define the inverse Fourier transform operator as:

F∗ : u 7→ (F∗u) such that (F∗u)(θ) =
∑
k∈Zn

uke
+i〈k,θ〉.

It can be shown that F∗F = id on L2(Tn), that there is an isomorphism between L2(Tn) and `2(Zn), and
that the identity (Ff, u)L2 = (f,F∗u)`2 holds. Therefore, any function in L2(Tn) can be written as its
Fourier series. For brevity, we refer to [7] for a full proof.

Importantly, it is not guaranteed that a function in L2(Tn) will be pointwise convergent or continuous.
This is because the L2 norm is invariant under a shift of a single point.

3.5.2 Sobolev Embedding Theorem

We define Sobolev spaces as follows:

Hs
λ :=

{
f ∈ L2(Tn) |

{
〈k〉sλf̃k

}
k
∈ `2(Zn)

}
,

or, alternatively, defining ∆ := −∇2,

Hs
λ :=

{
f ∈ L2(Tn) |

(
1 + λ2∆

)s/2
f ∈ L2(Tn)

}
,
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equipped with the inner product (·, ·)Hsλ such that ∀ f, g ∈ Hs
λ(Tn),

(f, g)Hsλ :=
∑
k∈Zn
〈k〉2sλ f̃kg̃k, (3.26)

where
〈k〉λ :=

√
1 + λ2k2, (3.27)

and λ is some characteristic length parameter, which will be discussed later.

The Sobolev Embedding Theorem states that functions in Hs
λ(Tn) are differentiable up to l orders of if

s > n
2 + l, that is [17]

Hs
λ(Tn) ⊆ Cl(Zn) if s >

n

2
+ l.

Therefore we can choose an appropriate s given the dimension of space n and desired differentiability l.

3.5.3 Dual Spaces

A dual space of a function space is the set of all continuous, linear functionals on that space. Convention-
ally, we denote it by a dash (′) after the function space we are interested in.

Consider a function f ∈ C0(Tn), and a linear functional f ′ such that C0(Tn)′ 3 f ′ : f 7→ f ′[f ]. We now
extend the Fourier transform to linear functionals. For any f ′ ∈ C0(Tn)′, we define its Fourier transform
to be

F : f ′ 7→ f̃ ′ such that f̃ ′k = f ′
[
e−i〈k,· 〉

]
,

where we omit the argument of the complex exponential to write denote it as the entire function without
supplied arguments. We note that the formal Fourier series is not necessarily convergent.

For any f ∈ L2(Tn), f ′ ∈ L2(Tn)′, using the linear property of f ′,

f ′[f ] = f ′

[∑
k∈Zn

f̃ke
+i〈k,·〉

]
=
∑
k∈Zn

f̃kf
′
[
e+i〈k,·〉

]
=
∑
k∈Zn

f̃kf̃
′
−k. (3.28)

3.5.4 Riesz Representation Theorem

We work in Hs
λ(Tn). Consider f ∈ Hs

λ(Tn), f ′ ∈ Hs
λ(Tn)′. Then, by (3.28),

f ′ [f ] =
∑
k∈Zn

f̃kf̃
′
−k =

∑
k∈Zn
〈k〉2sλ f̃k

(
〈k〉−2sλ f̃ ′−k

)
=
∑
k∈Zn
〈k〉2sλ f̃kR̃k,

where we formally defined the Fourier coefficient of the representation R of f ′ as

R̃k := 〈k〉−2sλ f̃ ′−k. (3.29)

By (3.26), this is in the form of the Sobolev inner product

f ′[f ] = (f,R)Hsλ
,

given that R is also a member of the Sobolev space, that is if
{
〈k〉sλR̃k

}
k
∈ `2(Zn) ↔

{
〈k〉−sλ f̃ ′k

}
k
∈

`2(Zn), that is if f ′ ∈ H−sλ (Tn). Therefore we can identify the isomorphism

Hs(Tn)′ ∼= H−s(Tn).
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3.5.5 Representations of Distributions on Sobolev Spaces

Upon calculation of the first adjoint for them metric tomographic problem, we will find that the func-
tional gradient terms will have the form such as

〈DgĴ , δg〉 =

∫ 1

0

〈F (x(t)) , δg(x(t))〉 dt,

where F is some function. If we were to choose to work in an L2 space, this can be presented in a form
of an L2 inner product, to retrieve

=

∫
Tn
〈δγF (x), δg(x)〉 dnx in L2

=⇒ DgĴ = δγF (x), (3.30)

where δγ is a delta function along the curve x(t). We note that, since we will be iteratively adding
components of gradient to update the model, if we work in L2, we will not get a point-wise convergent
solution. To find solutions with point-wise convergence and differentiability up to some order, we
must work in a Sobolev space. We identify that the linear functional δg 7→

∫
Tn 〈δγF (x), δg(x)〉 dnx is a

member of C0(Tn)′. From the Sobolev embedding theorem, Hs
λ(Tn) ⊆ C0(Zn) given s > n

2 . Therefore
C0(Zn)′ ⊆ Hs

λ(Tn)′ ∼= H−sλ (Tn) and so this linear functional has a valid representation in any Sobolev
space such that s > n/2, and its representation can be constructed from its Fourier coefficients using the
prescription (3.29) as

R̃k := 〈k〉−2sλ

(∫ 1

0

F (x(t)) e−i〈−k,x(t)〉dt

)
. (3.31)

4 Linear metric tomography
4.1 Linearisation of the Forward Problem
We consider the simple, linearly perturbative problem of a flat, isotropic metric with a small, varying
distortion field. In an isotropic medium, the metric is

gµν =
1

c(x)2
δµν ,

where c(x) is the velocity field.

On such a metric, consider a geodesic x(t), connecting two coordinates x(0) = x0 and x(1) = x1. Its
length is

l =

∫ 1

0

√
gµν(x)ẋµẋν dt =

∫ 1

0

1

c(x)
‖ẋ‖Rn dt,

where ‖·‖Rn denotes a Euclidean norm.

Now, consider a flat background metric c0, perturbed by c1(x)� c0,

c(x) = c0 → c′(x) = c0 + c1(x).

Upon this perturbation, the geodesic length will change with terms as

l→ l′ = l +

(
metric perturbed,

same path

)
+

(
same metric,

perturbed path

)
+ ... .

Fermat’s principle states that the first order contribution to the change in length of the geodesic is from
the metric perturbation only [13]. The contribution from only the metric perturbation can be found as

l′ =

∫ 1

0

1

c0 + c1(x)
‖ẋ‖Rn dt =

∫ 1

0

‖ẋ‖Rn
c0

(
1− c1(x)

c0
+O

(
[c1/c0]

2
))

dt.
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So, to linear order, the perturbation to the geodesic length from the perturbation to the metric is

δl = −
∫ 1

0

‖ẋ‖Rn
c20

c1(x) dt,

where ẋ(t) is the solution on the unperturbed metric. Noting that on the unperturbed metric,

p =
∂L

∂ẋ
= g(x)ẋ =

ẋ

c20
,

the perturbation of geodesic length then is

δl = −
∫ 1

0

‖p(t)‖Rn c1(x(t)) dt = −
∫ 1

0

‖p0‖Rn c1(x(t)) dt,

where both x(t) and p(t) are the solutions to the unperturbed problem.

The unperturbed problem can be solved using the EoM. Substituting the unperturbed metric into the
Hamiltonian, we find that

H =
1

2
c20 ‖p‖

2
Rn .

From Hamilton’s equations, for each geodesic, we can find that

dx

dt
= c20p = c20p0 ;

dp

dt
= 0,

with initial conditions x(0) = x0, p(0) = p0. We can simultaneously find the perturbation on the
geodesic length along with the EoM by simultaneously solving

dl

dt
= −‖p0‖Rn c1(x(t)),

from t ∈ [0, 1] with initial value δl(0) = 0, for each of Ngeo geodesics.

From these equations, we can solve the linearised forward problem, solving for unperturbed EoM and
the perturbed geodesic length.

4.2 Linearised Inverse Problem

Working in an Sobolev space, we can cast the action of the linear functional on c1, c1 7→ −
∫ 1

0
‖p0‖Rn c1(x(t)) dt,

as an inner product between c1 and representation (also known as kernel) R. We construct the kernel R
of the linear functional from its Fourier series. Following the prescription (3.29), similarly to (3.31), its
Fourier coefficients will be given by

R̃k = − 1(
1 + λ2k2

)s ∫ 1

0

‖p0‖Rn e
−i〈−k·x(t)〉 dt,

from which we can construc the kernel as

R(x) =
∑
k∈Zn

R̃ke
+ik·x.

Then,
δl = (c1, R)Hs .

For each geodesic, this must hold. We define the data vector

d =

Ngeo∑
i=1

δl(i)ei,
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where the coefficients are given by Ngeo perturbed lengths, and ei is a unit vector in data space, RNgeo .

We can deduce the linear forward operator to be A =
∑
i ei ⊗R(i), since

d =
∑
i

(
c1, R

(i)
)
Hs

ei =

(∑
i

ei ⊗R(i)

)
c1,

where we used the tensor product notation (a⊗ b)c := (c, a)b.

We define the misfit

Ĵ(c1) :=
1

2

〈
Ac1 − d,Ac1 − d

〉
.

Note that, because the model parameters do not change the EoM to first order, we do not require adjoint
methods, as the kernels

{
R(i)

}
i

are fixed. The first order gradients can be found to be

Dc1 Ĵ(c1) = A† (Ac1 − d) ,

where the adjoint operator A† =
∑
iR

(i) ⊗ ei.
A choice that we must make is the starting guess of the modelmstart. We note that iteration process only
adds or subtracts model components ∈ im(A†). To make sure that the final model only has information
required by the data, a sensible choice of an initial condition one such that mstart is the zero element in
the ker(A) subspace, c1(x) = 0. This way, the optimal model will only contain information given by the
data.

The second order gradient can be found by varying 〈Dc1 Ĵ(c1), c]1〉, from which we find that

Dc1Dc1 Ĵ = A†A,

which, for the special linear case, is independent of c1.

4.3 Numerical Implementation
The forward problem and the inverse problem, described in Secs. 4.1 , 4.2 were implemented in the For-
tran 90 programming language, for the torus of dimension n = 2. To implement the scheme, parametri-
sation of the velocity perturbation c1 was discretised into a lattice of linear size Nlat, c1(x) 7→ c1(xi, yj).
In between these lattice points, the function was approximated from its Fourier series, where the Fourier
coefficients, (kx, ky), spanned {−Nlat/2, ...,−1, 0, 1, ..., Nlat/2}. The program randomly generated a
model mgen, and generated data dgen from solving the forward problem. Then, gradient-based opti-
misation schemes were used to solve the inverse problem to obtain an optimising model, c1,min. More
specifically,

1. The background velocity, c0 was set.

2. The resolution, Nlat, was specified. Then, a perturbation field was created from by generating
numbers using a pseudo-random number generator on a lattice of set size Npert < Nlat between
set values [−c1,max, c1,max] such that c1,max � c0. It was then interpolated by its Fourier series
approximation on the lattice of size Nlat. This provided the generated model, c1,gen.

3. The number of geodesics, Ngeo was specified. Then, two-point pairs, (x0,x1), were also generated
between [0, 2π] for each coordinate using a pseudo-random number generator. Next, the required
starting momenta p0 for each geodesic on the background metric was found. Finally, the forward
equations of motions were solved the length perturbations were found through solving a Runge-
Kutta ODE solver, generating synthetic data dgen =

∑
i δl

(i)ei.

4. Given inputs for Sobolev space, s and λ, Ngeo kernels/representations for the linear functional
c1 7→ δl(c1) were constructed through their Fourier coefficients.
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5. Using only the informtion from synthetic data dgen, the LBFGS gradient-based optimisation scheme
was implemented given some initial model guess cstart to find c1,min that minimised the misfit.

For simplicity, we chose the background velocity value c0 = 1. The perturbation amplitude was chosen
to be c1,max = 0.05, with perturbation resolution Npert = 23, leading to a length scale of perturbation
Lhetero = 2π/Npert = 0.785. The velocity perturbation parametrisation was discretised into lattices of
linear number Nlat = 25. Powers of two were chosen as natural number for Nlat as the Fast Fourier
Transform algorithm worked by iteratively seperating the coefficents into two [19]. The pseudorandom
numbers were generated using a seed. The Sobolev number was chosen to be s = 2 > 2/2 + 0, to admit
continuous solutions. An example of a pseudorandomly generated velocity perturbation and geodesics,
used as the generated model for the discussion below, with Ngeo = 100, seed = 2342234 is shown on Fig
6.

Figure 6: Pseudorandomly generated velocity field, with its value indicated in color, with generated geodesics with
the pertrubed lengths in greyscale. They are generated with length scale of heterogeneity determined by Npert.

4.4 Discussion
A keen reader may point out that by discretising c1, we have essentially finitely-parameterised it. How-
ever, since we are merely sampling an underlying continuous function, for a real inverse problem, given
a desired spatial resolution ∆x, we could choose discretisation Nlat of c1 up to a point where further
increase in Nlat would not affect the kernels up to the resolution ∆x. Since we would be working in an
appropriate Sobolev space, the model solutions will converge as we increase lattice points. This process
does not impose any physical properties of the solution by choosing a lattice Nlat.

We have yet discussed the role of characteristic length scale λ. Since the final solution is built up
from a superposition of kernels, we can set and interpret λ as the expected length scale of heterogene-
ity/variation in the metric. We note that as λ tends to zero, the Sobolev inner product (3.26) tends to
the `2 (equivalently L2) inner product, (3.25). Therefore we expect that as λ decreases kernels should
become more sharply peaked, and therefore expect to require greaterNlat to converge to satisfactory dis-
crete representation. At λ = 0, equivalent to working in L2, the kernel is proportional to δγ as (3.30), and
would not converge even if infinitely many lattice points were added. These ideas are illustrated in Fig.
9. Representative kernels at different characteristic length scales, λbig = 0.99×2π, λopt = Lhetero = 0.785,
λsmall = 0.001 × 2π are plotted on Fig. 7, which agrees with the discussion above. The optimal models
for λbig, λopt and λsmall are presented in Fig. 8. Comparing to the generated model Fig. 6, optimal model
for λsmall = 0.01 × 2π fails to recreate the generated model as the kernels have support only in a small
neighbourhood around the geodesic paths. At λ = λopt = Lhetero, we find a good match with the gener-
ated model, and when it is increased further λ = λbig = 0.99× 2π, we find that the shorter-wavelength
variation of the generated model are not captured.

Using the methods outlined in Sec. 3.2, the eigendirections of the second order gradient, A†Awas found
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for characteristic length scale λopt. In Figs. 10a, 10b, we plot the the eigendirection with the highest
eigenvalue= 38.59 (most constrained, or least error) and the lowest eigenvalue= 0.19 (least constrained,
or most error). As expected, we can see that the center region with high density of geodesics is well
constrained, whereas regions with only a few geodesics are not well constrained. Any variation that is
orthogonal to all the kernels under the Sobolev inner product would lie in the null space ofA and would
be completely unconstrained by the data. Using a Gram-Schmidt process on the set of kernels {R(i)}i, a
set of orthonormal basis functions of im(A†), {Oi}i, can be found. Then, the projection of any c1 on this
subspace, projim(A†)(c1) =

∑
i(c1, Oi)HsλOi, can be subtracted from c1 to find the null-space component

of c1, projker(A)(c1) = c1 − projim(A†)(c1). This was done for a constant perturbation of c1,cst(x) = 1,
and is shown in Fig. 10c. As expected, the projection is non-zero in regions with no geodesics, which is
mostly edges of the coordinates.
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(a) λbig = 0.99× 2π

(b) λ = λopt = Lhetero = 0.785

(c) λ = λsmall = 0.001× 2π

Figure 7: Sample kernels (color) superposed with the
corresponding geodesic (black line) for various charac-
teristic length scales. In particular, the ringing arti-
facts of low characteristic lengths are due to aliasing of
the higher Fourier components, and is indicative that
the kernel has not converged - higher Nlat is needed to
remove the effects.

(a) λ = λbig = 0.99× 2π

(b) λ = λopt = Lhetero = 0.785

(c) λ = λsmall = 0.001× 2π

Figure 8: Optimal models for various characteristic
length scales. Comparing to Fig. 6, we see that λopt
provides the best match to the generated model com-
pared to the other extremes. This is a result of the fact
that the solutions are constructed as a superposition of
kernels.
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(a) λ = λsmallish = 0.01× 2π

(b) λ = λzero = 0

Figure 9: Figures illustrating the convergence properties of kernels and optimal model for λ = λsmallish = 0.01×
2π vs. λ = λzero = 0 (latter equivalent to working in L2). We note that for small Nlat = 24, the kernels for
λsmallish, λzero look similar and so do their optimal models. However, as Nlat increases, λsmallish case converges
and aliasing decreases, while for λzero case, it does not, as indicated by the increasing scale of the graphs. This
clearly indicates that working in an L2 space is inappropriate for the metric tomography problem.
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(a) Most constrained direction, with eigenvalue= 38.59, corresponding to least error.

(b) Least constrained direction, with eigenvalue= 0.19, corresponding to least error.

(c) Projection of c1(x) = 1 onto ker(A).
Figure 10: These figures illustrate the constraint of the optimised model. (a), (b) are eigendirections of the second-
order gradient of the misfit, whose reciprocal eigenvalue is proportional to the error of the model along that direc-
tion, see (3.14). They are members of im(A†) - optimal model is constrained in these directions by the curvature
of the misfit functional, to varying degrees. (c) is a member of ker(A), which means that the optimal model is
completely unconstrained in this direction.
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5 Non-linear metric tomography
We now look at the non-linear version of the problem, where we do not assume that the deviation from
some initial metric gstart is small, such that the path of the geodesics now vary as we vary the metric
guess. Our data is a collection of points {(x(i)

0 ,x
(i)
1 )}Ngeoi=1 and lengths of the geodesics {l(i)}i, from which

we wish to find an unknown metric g(x). The EoM also requires us to specify {p(i)0 }i such that the path
x(i)(t) is a geodesic satisfying x(i)(0) = x

(i)
0 and x(i)(1) = x

(i)
1 for all i ∈ {1, ..., Ngeo}.

We note that this case is an extension of the geodesic shooting problem; the optimisation problem must
solve for both the starting momenta {p(i)0 }i and the metric g. This is an example of combined source
and structure inversion, which has shown to reduce errors compared to structure inversion from a pre-
determined source parameters from a pre-existing model [11]. In our case, a separate source and struc-
ture inversion would correspond to pre-determining {p0} on a preexisting model, and optimising only
for the metric.

Noting the result (2.1) that l = ‖p0‖T ∗M, we can write down the Lagrangian for the adjoint method

L[m,u, u†] =

J
[
g,{p(i)

0 ,z(i)}i
]︷ ︸︸ ︷

λ1
2

∑
i

∥∥∥∥∥l(i) − ∥∥∥p(i)0

∥∥∥
T ∗M

∥∥∥∥∥
2

R︸ ︷︷ ︸
a

+
λ2
2

∑
i

∥∥∥∥∥πxz(i)(1)− x(i)
1

∥∥∥∥∥
2

Rn︸ ︷︷ ︸
b

+
∑
i

∫ 1

0

〈
dz(i)

dt
− J

∂H

∂z

(
z(i)
)
,Pz†(i)

〉
dt︸ ︷︷ ︸

c

+
∑
i

〈
z(i)(0)− z(i)0 , z

†(i)
0

〉
︸ ︷︷ ︸

d

,

(5.1)

where {z(i)}i are the forward variables, {z†(i)}i are the forward adjoint fields, {z(i)0 }i are the forward
variable initial conditions (of which we only vary the starting momenta {p(i)0 }i), {z

†(i)
0 }i are the initial

value adjoint variables, and g is the metric tensor. We clarify that the model parameters are

m =
({
p
(i)
0

}
i
, g
)
,

the forward variables are
u =

{
z(i)
}
i
,

the adjoint variables are
u† =

{
z†(i), z

†(i)
0

}
i
,

and the data, unaltered during optimisation, are

d =
{
x
(i)
0 ,x

(i)
1 , l(i)

}
i
,

λ1, λ2 are weighting factors to prioritise between the two misfits, and P : f(t) 7→ f(1 − t) is the time
reversal operator.

a is a new misfit term on the length of the geodesic, term b is the terminal value misfit as shown in

the geodesic shooting problem. Together, Terms a , b define the objective functional that we want

to minimise, J
[
g, {p(i)0 , z(i)}i

]
, under the constraints that the forward variables obey their EoMs and

initial values, imposed by c , d respectively. A keen reader may point out that misfit term a is

redundant, as we could parameterise {p(i)0 }i with n − 1 variables, since its norm is known. However,
this form is easier to manipulate in the case that there are data errors for {l(i)}i.
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5.1 First Order Adjoint Calculations
For readability, we suppress the geodesic index (i), with sums

∑
i to indicate whether it is summed over

the geodesics. All equations hold for any i. From LMT,

DmĴ = DmL ↔ Dp0
Ĵ = Dp0

L, DgĴ = DgL,

given the forward and adjoint variables obey the conditions

DzL = 0, Dz†L = 0, Dz†0
L = 0. (5.2)

We now present the expressions for these functional derivatives. For detailed techniques and derivation,
see appendix A.2.

By varying the first order adjoint variables in (5.1), we get〈
Dz†L, δz

†

〉
=

∫ 1

0

〈
dz

dt
(t)− J

∂H

∂z
(z(t)),

(
Pδz†

)
(t)

〉
dt, (5.3)

〈
Dz†0

L, δz†0

〉
=

〈
z(0)− z0, δz†0

〉
, (5.4)

which, together with the conditions (5.2), these must hold for any δz†, δz†0, we retrieve the forward
problem and its initial conditions.

By varying the Lagrangian (5.1) with respect to the forward variable, we find that〈
DzL, δz

〉
=

〈
λ2π

∗
x (πxz(1)− x1) + z†(0), δz(1)

〉
(5.5)

+

〈
z†0 − z†(1), δz(0)

〉
(5.6)

+

∫ 1

0

〈
dz†

dt
(t) +

{
P ∂2H

∂z∂z
(z(t))JP

}
z†(t), (Pδz) (t)

〉
dt. (5.7)

Thus, we obtain the adjoint equations together with its initial/terminal value conditions. Finally, we
vary the Lagrangian with respect to the model parameters to find〈

Dp0
L, δp0

〉
=

〈
−
(
λ1

[
l

‖p0‖T ∗M
− 1

]
p0g

−1(x0)

)
+ πpz

†
0 , δp0

〉
, (5.8)

and 〈
(DgL)µν , δgµν

〉
=
∑
i

〈[
l

‖p0‖T ∗M
− 1

] [
g−1(x0)p0

]µ [
g−1(x0)p0

]ν
, δgµν(x0)

〉

+
∑
i

∫ 1

0

〈
−
[(
Pz†

)
(t)
]T J

∂2H

∂z∂gµν
(z(t)) , δgµν (x(t))

〉
dt.

(5.9)

As shown in Sec. 3.5.4 and implemented in the linear case in Sec. 4.4, For each iteration, (5.9) would
be rewritten as an inner product between a kernel and and the metric perturbation in Sobolev space, so
that the components of the functional derivatives can be added to the metric iteratively.

The optimisation scheme would be as follows.

1. We make a starting guess of {p0} and g.

2. We choose the initial value of forward variables according to (5.4), and solve the forward problem
according to Eq (5.3), to obtain {z(t)} and also the terminal values {z(1)}.
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3. We choose initial value of the first order adjoint variables, {z†(0)}, according to (5.5). We solve the
adjoint problem (5.7) to find {z†(1)} and therefore {z†0} by (5.6).

4. All the forward and adjoint variables are now solved. We can calculate the gradient with respect
to the model parameters by substitution into (5.8) and (5.9). In particular, the gradient term for g
should be recast as an inner product of δg with some representative/kernel R, in an appropriate
Sobolev space.

5. We use some gradient descent method to update the model parameters and iterate until local
minima is found, i.e. DmĴ = 0 to some tolerance.

The order in which variables are specified is

({p0}, g)→ {z} → {z†} → {z†0} →
(
{Dp0

Ĵ}, DgĴ
)
.

5.2 Second Order Adjoint Calculations
As discussed in Sec. 3.2, the second order gradients can be used to quantify the the constraint on the
solution of the model, or to potentially improve the optimisation routine. Motivated by this, we present
the second order adjoints to obtain expressions of the second order gradients. See appendix A.3 for
details.

As described in Sec. 3.3, we define the new objective functional given some model direction m],

J1[u, u†m | m]] :=

〈
DmL,m

]

〉
=
∑
i

〈
Dp0

L,p]0

〉
+

〈
DgL, g

]

〉
. (5.10)

To constrain the forward variables u and the adjoint variables u† to their respective EoMs, we introduce
the second order adjoint variables, u], u†] as Lagrange multipliers, to write the second order Lagrangian
as

L1

[
m,u, u†, u], u†]

]
=
∑
i

〈
Dp0

L,p]0

〉
︸ ︷︷ ︸

α

+

〈
DgL, g

]

〉
︸ ︷︷ ︸

β

+
∑
i

〈
DzL, z

]

〉
︸ ︷︷ ︸

γ

+
∑
i

〈
Dz†L, z

†]

〉
︸ ︷︷ ︸

δ

+
∑
i

〈
Dz†0

L, z†]0

〉
︸ ︷︷ ︸

ε

,

(5.11)

where model parameters m = ({p0}, g), forward variables u = {z}, first order adjoint variables u† =

{z†, z†0}, and the second order adjoint variables are u] = {z]} and u†] = {z†], z†]0 }, and

α = −
∑
i

〈
λ1

[
l

‖p0‖T ∗M
− 1

]
g−1(x0)p0 + πpz

†
0 , p

]
0

〉
, (5.12)

β =
∑
i

〈[
l

‖p0‖T ∗M
− 1

] [
g−1(x0)p0

]µ [
g−1(x0)p0

]ν
, g](x0)µν

〉
(5.13)

−
∑
i

∫ 1

0

〈[(
Pz†

)
(t)
]T J

∂2H

∂z∂gµν
(z(t)) , g] (x(t))

〉
dt, (5.14)
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γ =
∑
i

〈
λ2π

∗
x (πxz(1)− x1) + z†(0), z](1)

〉
(5.15)

+
∑
i

〈
z†0 − z†(1), z](0)

〉
(5.16)

+
∑
i

∫ 1

0

〈
dz†

dt
(t) +

{
P ∂2H

∂z∂z
(z(t))JP

}
z†(t),

(
Pz]

)
(t)

〉
dt, (5.17)

δ =
∑
i

∫ 1

0

〈
dz

dt
(t)− J

∂H

∂z
(z(t)),

(
Pz†]

)
(t)

〉
dt, (5.18)

ε =
∑
i

〈
z(0)− z0, z†]0

〉
. (5.19)

Then,
DmĴ1 =

〈
DmDmĴ ,m

]
〉

= DmL1,

given the forward and 1st, 2nd adjoint variables obey the conditions

DzL1 = 0, Dz†L1 = 0, Dz†0
L1 = 0, Dz]L1 = 0, Dz†]L1 = 0, Dz†]0

L1 = 0. (5.20)

By inspection, from conditions Dz]L1 = 0, Dz†]L1 = 0, Dz†]0 L1 = 0, we simply retrieve the forward
EoM (5.3), the initial value condition (5.4) and the adjoint equations (5.5), (5.6), (5.7) respectively.

Varying L1 with respect to z†, z†0, we find that〈
Dz†L1, δz

†

〉
=

∫ 1

0

〈
dz]

dt
− J

∂2H

∂z∂z
(z)z] + J

∂2H

∂z∂gµν
(z)g]µν ,Pδz†(t)

〉
dt, (5.21)

〈
Dz†0

L1, δz
†
0

〉
=

〈
z](0)− π∗pp

]
0, δz

†
0

〉
. (5.22)

The EoM for variable z] has a source term dependent on g], with an initial condition dependent on p]0.

Next, varying L1 with respect to z, we find that〈
DzL1, δz

〉
=

∫ 1

0

〈
dz†]

dt
+

{
P ∂2H

∂z∂z
(z)JP

}
z†] + Pg]µν

∂3H

∂z∂gµν∂z
(z)JPz† + Pz]T ∂3H

∂z∂z∂z
JPz†,Pδz†

〉
dt

(5.23)

+

〈
z†]0 − z†](1), δz(0)

〉
(5.24)

+

〈
z†](0) + λ2π

∗
xπxz

](0), δz(1)

〉
, (5.25)

where we understand that the terms like

aT
∂3H

∂z∂z∂z
b

contracts the first and last components of ∂3H/∂z∂z∂z, and leaves the middle component free. The
equations of motion for z†] contains source terms from both g] and z].
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Varying L1 with respect to p0 we find〈
Dp0

L1, δp0

〉
=

〈
λ1

(
l

‖p0‖T ∗M
− 1

)(
g−1g]g−1p0 − g−1p

]
0

)
+

λ1l

‖p0‖
2
T ∗M

(
2pT0 g

−1p]0 − pT0 g−1g]g−1p0
)
g−1p0 − πpz

†]
0 , δp0

〉
,

(5.26)

which requires the value z†]0 to be calculated.

Varying L1 with respect to g, we find〈
DgL1, δg

〉
=
∑
i

∫ 1

0

〈
z]T

∂3H

∂z∂gµν∂z
(z)J

(
Pz†

)
−
(
Pz†

)T J
∂3H

∂z∂gρσ∂gµν
g]ρσ −

(
Pz†]

)T J
∂2H

∂z∂gµν
, δgµν

〉
dt

+ λ1
∑
i

〈(
l

‖p0‖T ∗M
− 1

)
[g−1p0]µ[g]p0 + g−1p]0]ν

+
l

2 ‖p0‖
3
T ∗M

(
1

2
pT0 g

−1g]g−1p0 − pT0 g−1p
]
0

)
[g−1p0]µ[g−1p0]ν , δgµν

〉
.

(5.27)
To calculate this quantity, z], z†] must be known.

To calculate the second order derivative, the process is as follows.

1. Find {z, z†, z†0} from the forward equations of motion ( (5.3)), the initial value condition ( (5.4))
and the adjoint equations (Eqs. (5.5), (5.6), (5.7)).

2. From Eqs. (5.21), (5.22), calculate {z]}.

3. With {z]} found, the initial values {z†](0)} and the source terms for EoM of {z†]} are specified,
from (5.25) and (5.23) respectively. Solving these, we can find {z†]0 } from (5.24).

4. All variables that fulfill (5.20) now specified. We can calculate calculate DmL1 = DmĴ1 from Eqs.
(5.26), (5.27).

Similar to the first-order adjoints, the order in which variables are specified is as follows:

({p0}, g)→ {z} → {z†} → {z†0} → {z]} → {z†]} → {z
†]
0 } →

({〈
Dp0

DmĴ ,m
]
〉}

,
〈
DgDmĴ ,m

]
〉)

.

6 Outlook
In this article, we proposed that we can work in Sobolev spaces to calculate functional derivatives to be
used in gradient-based optimisation, in the case that the kernels are not point-wise convergent posed in
conventional function spaces such as L2. We studied this idea on the metric tomographic problem, an
analogue of ray-tracing of surface waves. We implemented the proposed optimisation scheme for the
linear metric tomography problem on a 2d torus. Furthermore, we presented the first and second order
adjoints for non-linear metric tomography on a manifold, where we find that the second order adjoint
equations have source terms in their EoM. The first order adjoint equations can be used in gradient-
based optimisation and the second order adjoint equations can be used in quantifying the constraint on
the local minima of the output model.

The obvious next step would be to numerically implement gradient-based optimisation schemes for the
non-linear tomographic problem, for other types of manifolds such as spheres or manifolds with bound-
aries, working in the appropriate Sobolev spaces. The general use of Sobolev gradients could be applied
to any inverse tomographic problems such as full-waveform tomography where the kernel posed in
L2 is normally divergent. Furthermore, working in an appropriate Sobolev space, we could combine
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ray-tomography for high-frequency data, using the presented adjoints (Sec. 5), with full-waveform to-
mography for low-frequency data, into one optimisation. Such approached combining two data sources
could improve images of the Earth’s structure.

There are some open questions to consider for general non-linear inverse problems with a very large
model parameter space, most importantly the question of how to find the global minima of a misfit
function, in the case that exploring the full parameter space is impossible. The choice of length scale λ
in the Sobolev space is also up for debate. We propose that it should be used for expected length scale
of heterogeneity of the structure, but this fails to be of use when we have no a priori expectations of the
structure.
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A Appendix
A.1 Wave Propagation in Elastic Media
The physics of wave-propagation is well understood for homogeneous media [18]. In linearised form,
for homogeneous, simple, hyper-elastic media, the displacement field from equilibrium state, u(x) is
given by

u(x) = f (t− 〈p,x〉)a,

where x is the coordinate in the reference body, t is time, p is the slowness vector, and a the polarisation
vector, and we can understand 〈· , ·〉 to be the Euclidean inner product, and f can be any well-behaved
function, usually a wavepacket, with the condition(

Γ(p)− 1
)
a = 0,

where the Γ(p) is the Christoffel operator which encodes information about structure of the media. This
can be solved through simple linear analysis; for a given p, there is a solution if Γ(p)’s eigenvalues,
λk(p) = 1, and a is the eigenvector corresponding to the eigevnvalue λk(p).

For heterogeneous, anisotropic bodies, for cases where the length scale of heterogeneity Lhetero is much
greater than the length scale of the wavepacket, Lpacket, Lhetero � Lpacket, ray-tracing theory can be
used to approximate wave propagation, where the solutions have the form

u(x, t) =

∞∑
n=0

(
1

2π

∫
R

1

(iω)n
eiω(t−T (x))dω

)
an(x),

with leading term and one component of frequency given by

u(x, t) ≈ a0(x)eiω(t−T (x)),

where T (x) is the travel time, and an is the nth polarisation vector.

Defining the local slowness vector p(x) := ∂T (x)
∂x , the lowest order terms can be solved by the Eikonal

equation: (
Γ(x,p)− 1

)
a0(x) = 0,

where Γ(x,p) is the local Christoffel operator.

This can be solved using the method of characteristics. We note that again, in order for there to be
a solution, there must be some k such that λk(x, p) = 1. By continuity, all solutions must have this
property. Defining the ray Hamiltonian Hk as
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Hk(x,p) :=
1

2
λk(x,p),

if Hk is written as a functional of two independent variables x,p,

Hk[x,p] =
1

2
.

Now we note that if we use Hamilton’s canonical equations, Hk will be conserved, which means that
tk = 1. So, given some generating parameter t,

dx

dt
=
∂Hk

∂p
;

dp

dt
= −∂Hk

∂x
.

Given some initial condition p0,x0 such that 〈p0,x0〉 = t0, we can solve for the travel time T (x), which
turns out to be

d

dt
T [x(σ)] = 1 =⇒ T [x(t)] = t0 + t,

which suggests that the parameter t is simply the travel time itself.

A.2 Details of First Order Adjoint
For brevity, we drop the bolding of symbols and the geodesic indices (i). All equals signs are to first
order. We stress that varying z, z†, p0, z

†
0 in an expression summing over geodesics

∑
i, picks out the

element of the same geodesic index, thereby removing the summation. On the other hand varying g
changes every element therefore does not remove the sum.

The following identities will be useful: the anticommutation relation,{
∂

∂t
,P
}

= 0,

the invariance property, ∫ 1

0

〈·, ·〉dt =

∫ 1

0

〈P·,P·〉dt,

the involutory property,

P2 = 1,

and the transpose property of J:
JT = −J.

From (5.1), the first order Lagrangian is given by

L = a + b + c + d ,

where

a =
λ1
2

∑
i

∥∥∥∥∥l − ‖p0‖T ∗M
∥∥∥∥∥
2

R

,

b =
λ2
2

∑
i

∥∥∥∥∥πxz(1)− x1

∥∥∥∥∥
2

Rn
,

c =
∑
i

∫ 1

0

〈
dz

dt
− J

∂H

∂z
(z) ,Pz†(i)

〉
dt,

d =
∑
i

〈
z(0)− z0, z†0

〉
.
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A.2.1 Dp0L

The T ∗M norm of p0 transforms, under the perturbation of p0,

‖p0‖T ∗M =
√
pT0 g

−1p0 →

‖p0 + δp0‖T ∗M =
√

(p0 + δp0)T g−1(p0 + δp0) =
√
pT0 g

−1p0 + 2pT0 g
−1δp0 +O(2)

= ‖p0‖T ∗M

(
1 +

2pT0 g
−1δp0

‖p0‖2T ∗M
+O(2)

)1/2

= ‖p0‖T ∗M +
pT0 g

−1δp0
‖p0‖T ∗M

+O(2).

a contains term

(l − ‖p0‖T ∗M)
2 → (l − ‖p0 + δp0‖T ∗M)

2
= (l − ‖p0‖T ∗M)

2 − 2

(
l

‖p0‖T ∗M
− 1

)
pT0 g

−1δp0,

where only the p0 of the same geodesic transforms. So〈
Dp0 a , δp0

〉
=

〈
− λ1

(
l

‖p0‖T ∗M
− 1

)
g−1p0, δp0

〉
.

There is no p0 dependence on b , c , therefore their gradients vanish. d contains the term〈
z(0)− z0, z†0

〉
→
〈
z(0)− [z0 + π∗pδp0], z†0

〉
=
〈
z(0)− z0, z†0

〉
+
〈
−π∗pz

†
0, δp0

〉
,

therefore 〈
Dp0 d , δp0

〉
=
〈
−π∗pz

†
0, δp0

〉
.

We add up the contributions to get the form seen in the main text.

A.2.2 DgL

To vary the misfit with respect to g, we requre the tranformation of g−1. We note that under g → g+ δg,
to first order

gg−1 = 1→ (g + δg)
(
g−1 + δ

(
g−1

))
= 1 =⇒ δ

(
g−1

)
= g−1 − g−1δgg−1,

therefore the norm of p0 transforms under perturbation of g as

‖p0‖T ∗M =
√
pT0 g

−1p0 → ‖p0‖T ∗M′ = ‖p0‖T ∗M −
pT0 g

−1δgg−1p0
2 ‖p0‖T ∗M

.

so the following term, contained in a , transforms as

(l − ‖p0‖T ∗M)
2 → (l − ‖p0‖T ∗M′)

2
= (l − ‖p0‖T ∗M)

2
+

(
l

‖p0‖T ∗M
− 1

)
pT0 g

−1δgg−1p0.

Therefore 〈
(Dg b )µν , δgµν

〉
=
∑
i

〈
λ1
2

(
l

‖p0‖T ∗M
− 1

)[
g−1p0

]µ [
g−1p0

]ν
, δgµν

〉
,
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where g is evaluated at x0. b has no dependence on g. We now look at c . By Taylor expanding
∂H/∂z around g,〈

(Dg c )µν , δgµν

〉
=
∑
i

∫ 1

0

〈
−J ∂2H

∂z∂gµν
(z) δgµν ,Pz†

〉
dt =

∑
i

∫ 1

0

〈
−(Pz)†T J

∂2H

∂z∂gµν
(z) , δgµν

〉
dt.

d has no dependence on g. We sum up the contributions to get the form shown in the main text.

A.2.3 DzL

a has no dependence on z. b contains the string

(πxz(1)− x1)
2 → ([πxz(1)− x1] + πxδz(1))

2
= (πxz(1)− x1)

2
+ 〈2π∗x(πxz(1)− x1), δz(1)〉 ,

so 〈
Dz b , δz

〉
=

〈
λ2π

∗
x (πxz(1)− x1) , δz(1)

〉
.

We now look at c . By varying z, we find that〈
Dz c , δz

〉
=

∫ 1

0

〈
d(δz)

dt
− J

∂2H

∂z∂z
(z) δz,Pz†

〉
dt.

The first term can be evaluated value conditions using integration by parts:∫ 1

0

〈
d(δz)

dt
,Pz†

〉
dt =

∫ 1

0

d

dt

〈
δz,Pz†

〉
dt−

∫ 1

0

d

dt

〈
δz,

d
(
Pz†

)
dt

〉
dt

=

〈(
Pz†

)
(1), δz(1)

〉
−

〈(
Pz†

)
(0), δz(0)

〉
+

∫ 1

0

〈
P dz

†

dt
, δz

〉
dt

where we have used the anticommutation relation, while the second term can be massaged as:∫ 1

0

〈
−J ∂

2H

∂z∂z
(z) δz,Pz†

〉
dt =

∫ 1

0

〈
δz,−

[
∂2H

∂z∂z
(z)

]T
JTPz†

〉
dt =

∫ 1

0

〈{
P ∂

2H

∂z∂z
(z) JP

}
z†,Pδz

〉
dt,

using the invariance and involutory properties and transpose property. We combine the two expressions
to obtain the gradient expresison for c :〈

Dz c , δz

〉
=

〈(
Pz†

)
(1), δz(1)

〉
−

〈(
Pz†

)
(0), δz(0)

〉

+

∫ 1

0

〈
dz†

dt
+

{
P ∂

2H

∂z∂z
(z) JP

}
z†,Pδz

〉
dt.

Finally, d transforms as following: 〈
Dz d , δz

〉
=

〈
z†0, δz(0)

〉
;

we combine the contributions to find the expression found in the main text.
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A.3 Details for the Second Order Adjoint
As discussed in the main text, the second order Lagrangian (5.11) is given by

L1 = α + β + γ + δ + ε ,

where

α = −
∑
i

〈
λ1

[
l

‖p0‖T ∗M
− 1

]
g−1p0 + πpz

†
0 , p

]
0

〉
,

β = β1 + β2

=
∑
i

〈[
l

‖p0‖T ∗M
− 1

] [
g−1p0

]µ [
g−1p0

]ν
, g]µν

〉

−
∑
i

∫ 1

0

〈[
Pz†

]T J
∂2H

∂z∂gµν
(z) , g]

〉
dt,

γ = γ1 + γ2 + γ3

=
∑
i

〈
λ2π

∗
x (πxz(1)− x1) + z†(0), z](1)

〉

+
∑
i

〈
z†0 − z†(1), z](0)

〉

+
∑
i

∫ 1

0

〈
dz†

dt
+

{
P ∂

2H

∂z∂z
(z)JP

}
z†,Pz]

〉
dt,

δ =
∑
i

∫ 1

0

〈
dz

dt
− J

∂H

∂z
(z),Pz†]

〉
dt,

ε =
∑
i

〈
z(0)− z0, z†]0

〉
.

A.3.1 Dp0L1

We look at α . We note that the following string contained in α , expanding binomially, transforms as

(
l

‖p0‖T ∗M
− 1

)
pT0 →

{(
l

‖p0‖T ∗M
− 1

)
− 2lpT0 g

−1δp0

‖p0‖2T ∗M

}(
pT0 + δpT0

)
=

(
l

‖p0‖T ∗M
− 1

)
pT0 −

2lpT0 g
−1δp0

‖p0‖3T ∗M
pT0 +

(
l

‖p0‖T ∗M
− 1

)
δpT0 .

With substitution and massaging of the equation, we find that〈
Dp0 α , δp0

〉
=

〈
λ1

{
2lpT0 g

−1p]0

‖p0‖2T ∗M
g−1p0 −

(
l

‖p0‖T ∗M
− 1

)
g−1p]0

}
, δp0

〉
.

We β1 and collect orders of O(δp), where the expressions are similar to given before. We find

β1
′
− β1 =

λ1
2

{
−2lpT0 g

−1δp0

‖p0‖2T ∗M
pT0 g

−1g]g−1p0 +

(
l

‖p0‖T ∗M
− 1

)
2pT0 g

−1g]g−1δp0

}
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from which we can deduce that〈
Dp0 β , δp0

〉
=

〈
λ1

(
l

‖p0‖T ∗M
− 1

)
g−1g]g−1p0 − λ1

lpT0 g
−1g]g−1p0

‖p0‖2T ∗M
g−1p0, δp0

〉
.

β1 , γ , δ do not depend on p0. Upon substitution, similar to the case of d for L, we can deduce
that 〈

Dp0 ε , δp0

〉
=

〈
− πpz†]0 , δp0

〉
.

Combining the contributions, collecting the common factors, we find the expression given in the main
text.

A.3.2 DgL1

Using the transformation property of g−1 as discussed before, binomially expanding, we can find that

1

‖p0‖T ∗M
→ 1

‖p0‖T ∗M′
=

1

‖p0‖T ∗M

(
1 +

pT0 g
−1δgg−1p0

2 ‖p0‖2T ∗M

)
;

From this, we can deduce that

α
′
− α = λ1

∑
i

{(
l

‖p0‖T ∗M
− 1

)
pT0 g

−1δgg−1p]0 −
lpT0 g

−1δgg−1p0

2 ‖p0‖3T ∗M
pT0 g

−1p]0

}
,

from which we can deduce that〈
Dg α , δg

〉
= λ1

∑
i

〈(
l

‖p0‖T ∗M
− 1

)
[g−1p0]µ[g−1p]0]ν − lpT0 g

−1p]0

2 ‖p0‖3T ∗M
[g−1p0]µ[g−1p0]ν , δgµν

〉
.

β1 transforms similarly to α . Variation of β2 with respect to g can be Taylor-expanded, yielding〈
Dg β , δg

〉
= λ1

∑
i

〈(
l

‖p0‖T ∗M
− 1

)
[g−1p0]µ[g]p]0]ν − lpT0 g

−1g]g−1p0

4 ‖p0‖3T ∗M
[g−1p0]µ[g−1p0]ν , δgµν

〉

−
∑
i

〈(
Pz†

)T J
∂3H

∂z∂gρσgµν
gρσ, δgµν

〉
dt.

γ1 , γ2 are not dependent on g. To evaluate how γ3 varies with g, it is useful to note the distributivity
of P :

PAB := P (AB) = (PA) (PB) .

Therefore

γ3
′
− γ3 =

∑
i

∫ 1

0

(
Pz]

)T P ∂3H

∂z∂gµν∂z
(z)δgµνJPz†dt

=

〈
Dg γ3 , δg

〉
=
∑
i

∫ 1

0

〈
Pz]T ∂3H

∂z∂gµν∂z
(z)JPz†,Pδgµν

〉
dt

=
∑
i

∫ 1

0

〈
z]T

∂3H

∂z∂gµν∂z
(z)JPz†, δgµν

〉
dt.

Similarly for δ , we find that〈
Dg δ , δg

〉
=
∑
i

int10

〈
− J

∂2H

∂gµν∂z
(z)Pz†], δgµν

〉
dt.

Finally, ε does not depend on g. We combine the contributions and get the result in the main text.
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A.3.3 DzL1

Only β2 , γ2 , γ3 , δ , ε are dependent on z. All derivations integration by parts and Taylor
expansion techniques similar to the first order adjoint; we present some of the steps below.

β2
′
− β2 = −

∫ 1

0

〈(
Pz†

)T J
∂3H

∂z∂gµν∂z
δz, g]µν

〉
dt =

∫ 1

0

〈
Pg]µν

∂3H

∂z∂gµν∂z
JPz†δz,

〉
dt,

γ2
′
− γ2 =

〈
λ2π

∗
xπxz

](0)δz(1)

〉
,

γ3
′
− γ3 =

∫ 1

0

〈
P ∂3H

∂z∂za∂z
δzaJPz†,Pz]

〉
dt =

∫ 1

0

〈
Pz]T ∂3H

∂z∂z∂z
JPz†,Pz

〉
dt,

δ
′
− δ =

〈
δz(1),

(
Pz†]

)
(1)

〉
−

〈
δz(0),

(
Pz†]

)
(0)

〉
+

∫ 1

0

〈
dz†]

dt
+ P ∂

2H

∂z∂z
JPz†],Pδz

〉
dt,

ε
′
− ε =

〈
δz(0), z†]0

〉
.

A.3.4 Dz†L1

Only β2 , γ are dependent on z†.

β2
′
− β2 =

∫ 1

0

〈
J
∂2H

∂z∂gµν
g]µν ,Pδz†

〉
dt,

γ1
′
− γ1 =

〈
− z](0), δz†(1)

〉
; γ2

′
− γ2 =

〈
− z](1), δz†(0)

〉

γ3
′
− γ3 =

〈(
Pz]

)
(1), δz†(1)

〉
−

〈(
Pz]

)
(0), δz†(0)

〉
+

∫ 1

0

〈
dz]

dt
− J

∂2H

∂z∂z
z],Pδz†

〉
.

We note that the first two terms in the γ3 cancels the γ1 , γ2 expressions.

We sum up all the contributions to obtain the expression given in the main text.

A.3.5 Dz†0
L1

Finally, we look at the variation of L1 with respect to z†0. Thankfully, this derivation is easy. Only α ,

γ1 are dependent on z†0.

α
′
− α =

〈
− π∗pp

]
0, δz

†
0

〉
,

and

γ1
′
− γ1 =

〈
z](0), δz†0

〉
.

We sum up all the contributions to obtain the expression given in the main text.
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